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Preface 

Teaching students in the field of visualization comes with a list of challenging 
tasks since most of them have neither an experience in computer and data 
science, data structures and algorithms, programming and web development, 
nor in visual and interface design, as well as many related disciplines such 
as user experience and usability, perception and cognition, or evaluation 
with and without eye tracking. However, all of those fields are required to 
design and implement a real-world visualization tool, maybe in the form of 
a dashboard, with the goal to support users with their tasks at hand. Leaving 
away one of the fields during education creates a gap in the entire data-to-
visualization mapping process that it becomes hard to understand the field of 
visualization in its entirety. Consequently, it is important to work through all 
of those involved fields in a course, at least a bit of everything at the desire of 
and tailored to each student, to bring the students to an experience level from 
which they can understand the connections in the field of visualization. The 
biggest challenge in a visualization course is to take into account the students’ 
different basic skills and experience levels to make the course interesting, 
motivating, and successful for everybody participating in it. 

This book makes an attempt to bring together the many related fields 
in visualization, providing many examples that were taught over the years 
while giving courses in visualization, visual analytics, graphical user interface 
and dashboard design, user evaluation and eye tracking, or programming 
languages as well as web development. Visualization is that powerful so 
students can get inspired by many application scenarios that it can focus 
on, being it in fields like social networking, sports, software engineering, 
gaming, eye tracking, medicine, nature, or just looking at data from statistics 
or data science, to mention a few. Visual output can be interpreted, discussed, 
improved, disseminated, communicated to, or shared with others, and builds 
the basis for many further discussions among the students which provides a 
good way to give feedback, always targeting the goal of educating them and 
to make them learn about this interesting but challenging field. Visualization 
is some kind of practical discipline that allows to apply the theoretic concepts 

xi 
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learned during the course, in order to solve a given realistic data science 
problem. Such problems can be manifold, stemming from various application 
domains, oftentimes with a link to a real-world data problem that students 
are aware of or even more actively involved in, for example, in the context 
of a company or industrial partner for which the students currently work 
or for which they have worked a while ago. Such a link can build a bridge 
between a theoretical course in visualization and a more realistic real-world 
data example, creating some kind of synergy effect. 

The book is organized in a way to explain aspects from all of the involved 
fields, in a structured way, while at the same time giving plenty of real-world 
visual examples as well as runnable code snippets among discussions. More-
over, each section is concluded with exercises worth solving and thinking 
about, in order to learn the rules of designing and implementing dashboards 
for interactive data visualizations. As a benefit we also provide one possible 
solution, among many imaginable ones, to support the learning effect. We 
primarily focus on interactive dashboards, although many other solutions 
for a visualization problem exist and might solve the problem in a more 
efficient way. On the other hand, dashboards are easy to understand and to 
teach and quickly lead to a desired visualization tool solution equipped with 
various interaction techniques. This is also due to the limited amount of time 
planned for typical courses on visualization in universities that build a time 
frame in which a maximum must be learned with a minimum of effort. In 
many of the courses, it was an amazing experience to see the students’ tool 
running in the end, either locally on our own computers or via a URL on 
the web, making it accessible for everybody who has an internet connection. 
This milestone was also reached for the weaker, less-experienced ones, even 
when they started with nearly no background knowledge about one or all of 
the involved fields in the beginning, again showing us that the content was 
successfully explained. 

The remainder of the book is as follows: Chapter 1 starts with introducing 
the general problem and tries to show the bridges between all of the related 
fields. Chapter 2 makes an attempt to describe the data-to-visualization map-
ping with respect to dashboards, while also perceptual and cognitive issues 
related to visual and interface design are taken into account. In Chapter 3, 
we are going to explain the major programming ingredients to create dash-
boards for interactive visualization, while Chapter 4 builds the basis from an 
implementation perspective focusing on the programming language Python. 
Applications are provided in Chapter 5 coming with code examples as well 
as their visual outputs in the form of dashboards. The book is completed with 
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many discussions on scalability issues and limitations which can be found 
in Chapter 6, before concluding the book in Chapter 7. A general remark on 
the book’s reading strategy is that it can be studied in its entirety, starting 
from the beginning, page by page, or each chapter can be read individually 
since it builds its own learning unit. This means that an experienced reader 
in programming might skip the chapter on programming and might focus on 
chapters including visualization, interaction, or design aspects. 
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1 
Introduction 

Making data available in a visual form is of great interest in these days 
since the visual output generates a method to find patterns, correlations, and 
anomalies in a dataset [178]. The main benefit of visualization comes from 
the perceptual strengths of the visual observers [115, 245, 246], allowing 
to rapidly detect hidden data patterns that help to find hints or solutions to 
the data analysts’ tasks at hand. Although there are various visualization 
techniques, diagrams, charts, and plots available today, and many more will 
be developed in the future, it has become a tedious task from a design and 
implementation perspective to put all of the needed ingredients together in 
order to create a runnable, user-friendly, efficient and effective, aesthetic, 
and responsive solution for a specific data science task at hand, which is the 
general goal to find insights and knowledge in data. However, data comes 
in a variety of forms, consisting of individual and primitive or combined 
and complex data types, stored in different data formats, on local files or 
databases, accessible via a URL from the web, being static, dynamic, or even 
evolving in real-time at frequent update rates. All of these data issues already 
span a rich space of possible solutions, but the human users are finally the 
deciding factor in figuring out if the implemented data visualization solutions 
meet their needs and help them to solve their tasks at hand. 

In this book, we are going to describe this interesting topic with var-
ious Python code [149] examples. We briefly introduce the visualization 
pipeline [177] combined with interaction techniques [258] before we step into 
the ingredients required to develop dashboards [13]. For the unfamiliar ones, 
we are going to introduce the programming language Python with the major 
concepts to build running programs with already quite a lot of functionality. 
The Python code is needed to allow some kind of variability in a dashboard, 
starting from data reading, parsing, and transformations, finally, leading to 
preprocessed data that builds the core ingredient for interactive and scalable 
visualizations placed in a user interface, in our case, coming in the form of 
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a dashboard. Application examples round up the book by showcasing larger 
running examples that can be tried out by the readers, even be manipulated or 
modified to get the code running for one’s own application examples. Finally, 
the experiences of the human observers play a crucial role in the entire 
development process. Since we do not know such prior knowledge of our 
readers, we try to describe all of the required concepts from the perspective 
of nonexperts in computer science, data science, programming, visualization, 
and user evaluation. 

1.1 A Visualization Pipeline 

The general idea behind data visualization is a mapping that describes how 
data is transformed from original data sources into something visual, some-
thing with which users can interact, following the common goal of detecting 
insights and knowledge in a known or unknown dataset. This whole process 
can be illustrated in a visualization pipeline [177] (see Figure 1.1) starting 
with raw data, bringing it into a preprocessed form, transforming it into 
structured information while finally, presenting those structures in a visual 
depiction in one or several types of diagrams, charts, plots, or visualiza-
tions, each depicting a certain kind of data feature, hence providing a visual 
perspective on the data under exploration. Human users are, thanks to the 
invention of the computer, in the great role of interacting with all of the views, 
adapting and modifying them, changing parameters, asking for new layouts, 
and all of this in a fast response time to make the visual exploration a user-
friendly experience. The ultimate goal, however, is to get some user feedback 
to detect design flaws and, based on that, improve the visual as well as the 
interface, that is, dashboard and design. 

Figure 1.1 A visualization pipeline: Starting with raw data, processing it, transforming it, 
building visual structures, and finally visualizing it in a dashboard. 
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The data-to-visualization mapping is a complex one, consisting of a 
multi-stage model with crucial stages and transformations (see Figure 1.1). 
All of the involved stages will be described in the book, also taking into 
account aspects like visual perception [115] and cognition, to create powerful 
visual depictions of data that are not cluttered [202], that do not lie, and 
that are free of chart junk [232]. Moreover, we also take into account design 
principles for the visual depictions but also for the visual interface and take a 
critical look at visual variables [180] that occur in a variety of forms: 

• Stages: 

– Raw data: This brings the questions into play how the data is 
structured, how large it is, if it consists of several data sources, 
or if it contains missing or error-prone values. Moreover, the data 
might be stored locally on a computer or might be accessible via a 
URL from the web. The data could even be static data or dynamic, 
in the most complicated way existing in a real-time form. 

– Processed data: In many cases, we can find the raw data in a 
strange format or even consisting of several unlinked data sources 
for which a common key exists to link them into one dataset. 
One good idea would be to put all of the data under exploration 
into a common data file (maybe in a comma-separated values 
(csv) format) or to put it into a database. The general idea behind 
this stage is to make the data available for a data analysis or 
visualization tool in one data source and avoid looking it up at 
several locations which might cause challenging issues due to bad 
performance during runtime. 

– Transformed data: To really get more structured information from 
the preprocessed data, we need some user-defined algorithmic 
approaches that put the data into statistical outputs, correlations, 
clusters, or even results that are based on data mining extract-
ing association or sequence rules, just to mention a few of the 
transformations. 

– Visual output: Finding insights in any kind of data, either in 
a raw, processed, or transformed form, might be supported by 
visualizations that make use of the humans’ abilities to rapidly 
detect patterns due to their perceptual strengths [115]. Various 
visualization techniques exist, each focusing on certain data types 
and users’ tasks at hand [245, 246]. 



4 Introduction 

• Manipulations: 

– Reading/parsing: Some steps have to be taken into account to 
bring the raw data into a processed data form, for example, during 
the reading and parsing process, the data can already be partially 
cleaned or annotated with extra information. However, most of the 
advanced enrichments can only be done after a more thorough data 
transformation process. 

– Transformation: The processed and partially cleaned data can fur-
ther be analyzed for common patterns, correlations, outliers and 
anomalies, as well as certain sequential behavior in case the data 
has a sequential or time-dynamic property. 

– Visualization: The visual depiction of the data is of importance, 
however, the rendering process has various options to use visual 
variables, to use different display technologies, as well as interface 
styles and designs, which is particularly important for dashboards. 

• Users-in-the-Loop: 

– Feedback: The user group is able to interact with all of the 
aforementioned stages (however, in Figure 1.1, we only show the 
interaction with the last stage). While interacting and trying to 
visually explore a dataset, users typically form some kind of con-
fidence level that describes how well the interactive visualization 
supports them in solving tasks at hand. This is typically evaluated 
in a complex user study, giving concrete tasks based on formerly 
stated hypotheses, by measuring dependent variables like error 
rates and completion times. Modern evaluations even incorporate 
eye tracking and further physiological measures to get even more 
hints about visual attention behavior, visual task solution strate-
gies [46], or body-related issues such as blood pressure, EEG, or 
stress levels. However, the analysis of such data is typically very 
challenging and demands for further advanced visual analytics 
systems, meaning statistical evaluation alone is not enough to find 
insights. 

Furthermore, if users interact with the visualizations, those get trans-
formed as well into different perspectives, layouts, filtered views, and so on. 
Hence, those operations are another kind of modification, but typically work 
on the visual level, not on the data level. However, mostly the interactions 
require further algorithms to be applied which are running in the background 
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and which might cause longer waiting times depending on the algorithms’ 
performances and/or the dataset sizes in use. 

Exercises 

• Exercise 1.1.1: Imagine you have found a certain dataset on the web and 
are interested in the patterns, correlations, and anomalies hidden in it. 
Describe the ingredients you need to solve this problem by taking into 
account the stages of the visualization pipeline illustrated in Figure 1.1. 

• Exercise 1.1.2: How can the users be integrated into the design and 
implementation process of a visualization tool or dashboard? What are 
typical challenges when asking real users to apply a visualization tool to 
a given dataset? 

1.2 Human Users and Tasks 

Visualization is not good per se, the human users with their perceptual 
abilities [245] decide if a certain task or task group can be solved reliably, 
or if at least some hints about the data patterns to be searched for can 
be provided by an interactive visualization tool. However, not every user 
behaves in the same way. All of them have varying properties, are members 
of different property groups like layman versus domain expert, young versus 
old, nonexperienced versus experienced, disabled vs. non-disabled, and many 
more. It is very important during the design process of a visualization tool or 
a dashboard in general to take into account those user properties, otherwise, 
we might run into problems that are hard to fix later on, once the tool 
is designed and implemented. The design process is typically guided by 
formerly built hypotheses or research questions about a given dataset. The 
goal of the visualization tool is to provide answers to the hypotheses and 
research questions, either trying to confirm or reject them, in many cases, 
refining them or leading to new hypotheses and research questions. However, 
all of them require tasks to be solved, either completely or at least partially. 

The biggest issue here is that real users can be included in the design 
process right from the beginning, in subsequent development stages, however, 
such a strategy is time-consuming and expensive. But the human users with 
their research questions are required to make a tool powerful and applicable 
to real-world problems. In many visualization designs, we can find the users’ 
feedback in the end, that is, after the implementation phase has ended, but 
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at the cost of getting a lot of feedback worth incorporating. The value of 
the feedback also strongly depends on the users’ experience levels with 
both, visualization as a research discipline as well as the application domain 
where the data stems from. For example, building an interactive dashboard 
for visual analytics in medicine demands a user who is able to read and 
interpret visualizations and diagrams while at the same time having some 
profound knowledge in medicine. Such a combination of expertise makes the 
development of a visualization tool quite challenging, time-consuming, and 
cost-intensive [33]. 

The value and effectiveness of visualizations [95, 237] are also dependent 
on the tasks that have to be solved by using them. Each visualization tech-
nique typically only follows a certain number of specific tasks for which it 
is designed and for which the human users perform best. There is an endless 
list of typical data exploration tasks that can be supported by visualization 
techniques, however, some of the tasks might be solved just by applying an 
algorithm that can be given some parameter values, and then the desired task 
solution is delivered after some time. But in cases in which there is no clear 
definition of such input parameters, that is, in cases in which an algorithm 
cannot be specified clearly enough to produce a solution, we might wish to 
look at a diagram to let the human users judge and evaluate the visual patterns. 
This brings us to a situation where a certain freedom of decision making is 
allowed, in the best case leading to the fact that an algorithm is known or can 
be created to faster find a task solution. 

Figure 1.2 Searching for a visual object in a visual scene is denoted by the term search task 
that typically requires focused visual attention and a visiting and checking strategy to identify 
the visual object-of-interest. The observer might search for a set of neighbored dots visually 
encoded in a certain color pattern. 
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Well-known and often occurring tasks from a much longer list are for 
example: 

• Search task: One of the most time-consuming task comes in the form 
of a visual search, for which the entire display has to be visually 
inspected in the worst case, to identify the visual object-of-interest (see 
Figure 1.2). The search can be more efficient if a certain visual feature of 
the object-of-interest is known beforehand, for example, a certain color 
or color pattern, hence leading to some kind of visual pre-filtering of the 
display. 

• Counting task: In cases in which only a few objects are visually 
represented, we might start inspecting them one-by-one and count the 
visited objects, for example, to get an idea about how much information 
is presented visually. The number of objects to be counted should not be 
too large; otherwise, a counting task would become a tedious procedure 
that one would probably not like to solve. 

• Estimation task: If too many visual objects are depicted, we typically 
do not count them one after the other. In such a scenario, we would 
switch into some kind of estimation task that gives an approximate 
number of visible objects. In most cases, groups of visual objects are 
estimated based on the number of objects and those are later compared, 
for example, after having applied a clustering algorithm, for which a 
visual output is displayed. 

• Correlation task: If two or more variables are under exploration we 
are typically interested in a certain correlation behavior, asking whether 
those variables behave in a similar way or show some kind of contra-
dicting, opposite effect, for example, the values of one variable show an 
increasing behavior while those of the other variables are decreasing in 
the same time period. 

• Pattern identification task: A very general task comes in the form 
of pattern detection, which requires to understand what a pattern is. 
This can actually be a problem for algorithmic solutions, which do not 
know exactly which kind of pattern we are looking for. The pattern 
identification task might be supported by visual outputs which make 
use of the perceptual and cognitive strengths of the humans’ visual 
systems [246]. 

There are many more tasks that are imaginable, too many to mention all 
of them here, but typically tasks are based on a sequence of much simpler 
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tasks. The general question in usability is how users solve tasks step-by-
step. This sequential visual attention process can give useful insights in the 
fact if a user interface, dashboard, or visualization tool has been designed 
and developed by following the rules that make it a powerful tool for data 
exploration and analysis. Eye tracking [44, 87, 123] is a modern technology 
applied to interactive visualizations [8] with the goal to record visual attention 
behavior but, on the challenging side, to also visually and algorithmically 
explore the eye movement data. 

Exercises 

• Exercise 1.2.1: Imagine you have a dataset about a social network, for 
example, people from a certain region who are related or not. Which 
hypotheses or research questions might be interesting to ask, given the 
fact that we have a social network dataset? 

• Exercise 1.2.2: Which kind of tasks do we need to solve, to find solutions 
to the formerly stated hypotheses about the social network dataset? 

1.3 Programming Directions and Solutions 

There are various programming solutions for this kind of problem. On the one 
hand, we can decide to use a certain programming language like Python, Java, 
JavaScript, C, C++, R, and the many options we have these days [37]. On 
the other hand those programming languages typically support visualization 
libraries or frameworks from which we can choose. Such libraries are, for 
example, matplotlib, Bokeh, Plotly, Swing, D3, CUDA, and R Shiny, just to 
mention a few from a really long list (see Table 1.1 for a longer, structured, 
and temporally ordered list). Which ones are finally chosen depends on the 
developers’ decisions and on which tasks the designed and developed tool 
should be created in particular. However, not only the programming language 
and visualization libraries are important, we also have to know about the 
design issues that have to be taken into account in order to create a usable 
visualization tool. For example, the visual design and the interface design 
play a crucial role for usability, that is, if such rules are not followed properly 
we might run into a situation in which the tasks at hand are not solvable 
or in which the tool suffers from a degradation of performance at some 
tasks [202]. The visual design typically depends on the visualization library 
(see Figure 1.3 for some visual examples created with different visualization 
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libraries) while the interface design is typically guided by given or self-
created layouts combined with additional component properties like margins, 
distances, borders, sizes, fonts, and many more. 

Table 1.1 Examples for programming languages, visualization libraries, the year of first 
development, and additional special properties. 
Programming Visualization Year Special 

language library properties 

Java AWT 1995 Graphical user interfaces (GUIs) 
Java Swing 1996 GUI widget toolkit 

Python Matplotlib 2003 Interactive visualizations 
R ggplot2 2005 Lattice graphics 

Javascript D3 2011 Web standards 
R Leaflet 2011 Spatial data visualization 
R Shiny 2012 Interactive web applications 

Python Bokeh 2012 Modern web browsers 
Python Seaborn 2012 Statistical graphics 

Javascript Plotly 2012 Web-based 
Javascript Chart 2013 Open-source library 

Python Geoplotlib 2016 Hardware-accelerated 
Python Chartify 2017 Open source library 

R Esquisse 2018 Drag and drop interface 

(a) (b) (c) 
Plotly matplotlib Seaborn 

Figure 1.3 Different visual outputs created by applying functionality from several visual-
ization libraries: (a) Plotly. (b) matplotlib. (c) Seaborn. 

The biggest challenge from a programming perspective is to choose and 
to connect the right components in order to create a successfully running, 
efficient, and effective visualization tool. However, this is actually a big issue 
and requires profound knowledge about a multitude of scientific disciplines, 
with visual design and programming among them. To summarize this prob-
lem, we have to know how to build a visualization tool, starting from raw data 
and ending with an interactively running visual output, possibly be accessible 
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online via a URL that has to be typed into the URL field of a web browser. 
Such a web-based tool is easiest to start from users’ perspectives since it 
just requires to simply write or copy and paste the correct URL into the 
web browser, no extra installations are needed. Actually, a dashboard can 
be built in exactly this way, keeping the burden for the users quite low and 
hence, with such web-based visualization tools, we can quickly distribute 
it among a large community, for example, to disseminate some valuable 
results based on visual analyses of data. One big issue can still occur. We 
need a stable internet connection to access the implemented visualization tool 
successfully; otherwise, a locally stored version of the tool would also be an 
option, but negatively, the users have to understand how to get it running on 
their computers. 

If a dashboard is running, it cannot only be used for data exploration but 
even for services, for example, a company might need it to sell products or 
request customer reactions and the like. There is an endless list of application 
scenarios in which dashboards are worth designing and implementing. How-
ever, more and more dashboards are created to make data visually observable, 
for example, by showing the relations in a social network, informing about 
weather trends, showcasing the international flight behavior, or illustrating 
earthquakes happening on earth every day, from a daily, monthly, or yearly 
perspective, provided by multiple coordinated views [200] and the integration 
of various interaction techniques [258]. The data scientists are much more 
experienced to use algorithms and visual outputs since it belongs to their 
daily jobs to deal with data of different kinds; however, the biggest issue 
here is to make the data understandable to the laymen, the nonexperts in data 
science and data visualization, hence a dashboard that runs online can be of 
great help, also for people who do not regularly work in the field of data 
science. The goal of this book is to involve interested people in this domain, 
that is, nonexperts, to make them aware of the technologies and processes to 
build such tools by themselves one day. This has a positive benefit that they 
are not dependent on the work of others anymore, but can create their own 
independent solutions to their tasks at hand. 

Before starting to create one’s own dashboard, we have to understand the 
aspects surrounding this whole process. Visualizations have to be understood 
and which purpose they have for a certain data type. For example, prominent 
visualization techniques like histograms, bar charts, pie charts, scatter plots, 
star plots, scarf plots, dendrograms, or geographic maps with additionally 
overplotted information (maybe population densities) are a first step but also 
the various interactions they support and how they can be linked for creating 
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a more flexible and complex visualization tool with much more functionality 
can be of great interest. Even animated diagrams might be interesting; for 
example, if some kind of dynamic story has to be told with data which 
is oftentimes preferred in the industrial environment to show processes to 
customers. It may be noted that even if all of the involved technologies 
to build a dashboard are understood and can be applied, a big issue still 
comes from the computer science side which also deals with algorithms and 
their runtime complexities [102]. If a dashboard does not only show data 
visually, but the data have to be transformed in an earlier stage or even in 
real-time, the implementors might get confronted by several more hard-to-
tackle issues, also including the data handling and efficient access to the 
data, for example, stored in a database or in a text file. In general, creating 
powerful visualization tools, maybe in form of a dashboard, include many 
hidden bottlenecks and drawbacks. However, we try our best to explain those 
step-by-step in a tutorial-like book with many examples and exercises with 
solutions. 

Exercises 

• Exercise 1.3.1: Search for programming languages and visualization 
libraries and describe their benefits and drawbacks for the task of 
creating visualization tools and dashboards. 

• Exercise 1.3.2: What are the positive and negative aspects when using 
web-based solutions for visualization tools? 
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2 
Creating Powerful Dashboards 

A dashboard can be regarded as some kind of user interface that ‘lives’ in 
a certain display with a certain horizontal and vertical extent [161]. These 
dimensions can be made use of to place the required interface components 
and visualizations, diagrams, plots, or charts. But also, the interaction tech-
niques [258] are dependent on the display, the visualizations-in-use, how they 
are coordinated [200], and which tasks the users plan to solve. Dashboards 
are not static, but they are interactive, dynamic, and hence, they are full of 
life with a lot of functionality. They are a quite easy-to-implement way to 
create a visual output to illustrate data, in particular, to show the patterns, 
correlations, and anomalies contained in data. Apart from just showing data, 
we might also be interested in analyzing data, for example, by applying 
several algorithms that transform the data to get what we are looking for. In 
many cases, the results of such algorithmic approaches are that complex that 
a visual depiction is needed to understand the outputs of an algorithm, either 
after it has terminated or during its runtime [59, 62]. A dashboard offers a 
powerful method to let users play around and experiment with the data in a 
visual form, either with the raw data or with processed data. Moreover, if a 
dashboard is available online it can be used to disseminate the found insights, 
for example, to present them to a larger audience, either in a talk or by sending 
around the dashboards’ URLs that interested experts or nonexperts can easily 
get started to see the results. 

The topic of creating dashboards for data analysis is getting more and 
more interesting for many research communities, in particular, if they deal 
with datasets that need to be explored for patterns and outliers or anomalies. 
Since the programming experience of many researchers might be limited 
because they rely on existing tools and techniques to build a dashboard or 
they have to use an already implemented dashboard that might be expensive 
and that might not contain all the desired features. However, although any of 
the aforementioned approaches might be useful to get some good results, it 

13 
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is not easily possible to be flexible in the sense of being able to decide which 
functionality, which visualization, and which interaction to offer at what place 
and at what time in a dashboard, that is, creating one’s own solution might 
still be the better option. There is a lot of support for building dashboards 
like Microsoft Power BI, QlikSense, Tableau, or Grafana, just to mention 
a few. Those consist of a lot of functionality and negatively, as also in the 
case of a purely programmed solution, they have to be learned to efficiently 
work with them. Once they are understood, the dashboard creators are miss-
ing functionality and control that is needed to build dashboards designed 
for their tasks at hand and to easily extend them with new functionality. 
Programming a dashboard from scratch, on the other side, can be a longer-
duration solution, but these kinds of dashboards can be designed for nearly 
any kind of task [255] that has to be solved in data analytics, flexibly equipped 
with interaction techniques. However, a profound knowledge about Python, 
for example, is required to equip the dashboard with all of the features that 
are needed. 

Not only the programming side is problematic, but also questions about 
data handling, visual and interface design, including HTML and CSS to guide 
the layout, appearance, and aesthetic appeal of a dashboard, human–computer 
interaction, as well as user evaluation might be worth studying, in order 
to really get the most powerful solution we are waiting for, to dig deeper 
in our own or other people’s data, to explore it for patterns, correlations, 
rules, outliers, and anomalies. Moreover, linking all views and perspectives 
on the data, storing snapshots of the current state of the visual and algorithmic 
output, uploading data, sharing, and disseminating the results in the form of 
URLs, visualizations, or parts of a dataset that contain valuable information, 
are powerful, and can only tap the full potential if most of the techniques 
in this interdisciplinary field of designing and implementing dashboards are 
understood. No matter which kind of dashboard is created, the human users, 
with their tasks at hand should definitely be consulted, maybe in a controlled 
or uncontrolled user study, with the intention to get valuable feedback about 
the design flaws in an interactive dashboard. Such design flaws could be based 
on the visualization techniques in use or on the visual interface given by 
the dashboard with its visual components like sliders, buttons, text fields, 
and the like as well as their layout and interactive response. Moreover, from 
an algorithmic perspective, it might be worth studying how the data gets 
processed to understand the runtime complexities and bottlenecks in the form 
of poorly running algorithms that finally, also impact the interactivity of such 
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a dashboard. Nobody wants to wait for a long time until the next interaction 
can be applied. 

Actually, building a dashboard can be based on many programming 
languages. For example, the language R with its visualization library Shiny 
has shown to be a good solution, but for the newcomer in programming and 
in dashboard design, we recommend the programming language Python with 
either its powerful frameworks like Bokeh or Dash by Plotly. There is some 
tendency to use Dash since many users report on the fact that it is easy to learn 
while already quite powerful simple dashboards and web apps can be built 
with basic programming skills. However, if more advanced dashboards have 
to be created, much more profound knowledge about Dash, Plotly, and Python 
is needed. Dash itself is JavaScript-based to some extent since it makes use 
of React, a popular web framework based on JavaScript and Flask which is 
a prominent web server based on the programming language Python. Dash 
does not only support Python but programming languages like R or Julia as 
well. Deploying the first dashboard results and testing them online, might be 
done by using Heroku or pythonanywhere, but for larger results in the sense 
of using big data and more advanced functionality in the form of powerful 
algorithms we recommend an own virtual machine, in order to let it run on a 
server to make it accessible for anybody on earth who owns a computer with 
a stable internet connection. 

In this chapter we explain which typical ingredients are needed to build 
a dashboard, starting from the perspective on the data that can come in a 
variety of forms (Section 2.1). We will also take a detailed look on aspects 
related to visualization and algorithmic approaches (Section 2.2), also includ-
ing the human users with their tasks at hand to be solved. To include the 
aforementioned visual aspects in a broader context, we will describe typical 
visualization examples and applications (Section 2.3). The various rules for 
visual and interface design with good practice and no-goes will also be 
taken into account (Section 2.4). Finally, we look at interaction concepts, 
modalities, and displays (Section 2.5). 

2.1 Data Handling 

Data is actually the starting point of the design and also the development 
process of an interactive dashboard for data analysis and visualization [187]. 
There are typically lots of patterns, correlations, and anomalies in a dataset, 
but those are hidden somewhere in the flood of data, which makes data 
analysis and visualization a powerful concept to detect them. However, the 
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detection is in most cases more difficult than expected since we typically 
do not know what to look for, where to find it, and which tool, that is, 
analysis technique and visualization [245, 246], to apply. For this reason, 
we either know the structure of a dataset and can use well-known and well-
researched techniques, or we have to deal with a totally unfamiliar dataset, 
making us rely on hypotheses and research questions that come up with 
tasks at hand to be solved. These tasks and hypotheses guide the design and 
implementation of a visualization tool, for example, a dashboard. A dash-
board might be improved in an iterative way until the given tasks are solved 
and the hypotheses are finally either confirmed, rejected, or refined [141]. 
However, in many cases, after having used a dashboard for data analysis and 
visualization we get even more hypotheses. The reason for this is that the tool 
with all of its functionality is that powerful that it provides more insights than 
we would have expected in the beginning, before getting an algorithmically 
processed and visualized dataset. On the negative end, it is impossible to 
create a dashboard that is able to provide answers to all tasks, hypotheses, 
and research questions at the same time. Before we start designing and 
implementing such a tool we have to carefully look at our data and the users’ 
tasks at hand to come up with a list of useful features worth implementing. 
Moreover, we have to understand how those features are linked, for example, 
by interaction techniques [258]. The challenging problem with such a first 
design phase is that there are various data types that a dataset can consist of. 
Those typically build the starting point for further steps and stages. 

2.1.1 Data types 

The data to be analyzed and visualized plays a crucial role in the design and 
implementation phases of an interactive dashboard for data exploration [13]. 
We cannot just start creating a dashboard without knowing about the data in 
use. This process might be comparable to building a house without knowing 
the environment and the ground it should be built on. The data can come in 
a variety of forms, being primitive or complex, static or dynamic, univariate, 
bivariate, trivariate, or even multivariate, being stored in a text file or in a 
database, being homogeneous or heterogeneous, and even more distinguish-
ing features we might find when we are talking about data [216]. However, no 
matter which kind of data a dashboard is based on it can typically be split into 
its basic forms while those basics are important to understand to start with 
appropriate design decisions right from the beginning, no matter if the visual 
or interface design is taken into account. There are some kind of pre-defined 
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and well-established algorithmic approaches and visualization techniques for 
each data type, and we recommend, to use them whenever possible since they 
have shown to be powerful for certain tasks at hand that are solved based on 
them [44]. Hence, the approaches and techniques are not only based on the 
data types but even more on the users’ tasks. It is recommended to take into 
account both sides of the story, the data and the users who are trying to find 
insights in the data, but actually, getting the feedback of users is a challenging 
task, and in the best case, it should even be considered in any design and 
implementation phase, not only after the final product is created [220]. 

From the perspective of data type structures, we might distinguish 
between primitive data and complex data, that is, typically composed of two 
or more primitive data types or even more complex data types, although there 
is actually no limit about what to combine and to what extent. For example, 
a network of objects consists of the objects themselves with relations among 
them and the object properties which could be given as multivariate data, 
and this might even be time-varying. Primitive data can occur as quantitative, 
ordinal, or categorical data. 

• Quantitative data: This kind of data exists in the form of numerical 
values and meaningful arithmetic operations can be applied on it. For 
example, a certain number of cars has to be transported by a car truck. 
Each car has a weight, that is, a quantitative value. Summing up all car 
weights makes sense, for example, if all of them have to be placed on the 
car truck and we are interested in the total weight to avoid overloading 
the truck. Hence, this kind of data can be regarded as a quantitative data 
type. 

• Ordinal data: This data typically also exists in the form of numerical 
values, but it can also exist in any kind of form for which an inherent 
absolute order among the elements is given. Arithmetic operations do 
not make sense but all elements in the dataset can be ordered in a 
certain well-defined way. An example might be given by show sizes in a 
department store. Those are represented by numerical values. However, 
summing up shoe sizes does not make sense; ordering them makes 
sense; otherwise, a customer would hardly find the right shoes in the 
department store. 

• Categorical data: This kind of data puts elements into categories, as 
the name already suggests. It can also exist as numerical values, those 
cannot be transformed by arithmetic rules nor can they be ordered, 
they are just categories. For example, bus lines could be identified by 
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numerical values, but it does not make sense to add bus line 5 to bus 
line 8, for example, nor makes it sense to order the bus lines by their 
numbers. The lines are just representatives for certain routes a bus is 
taking in a city. 

Apart from primitive data, we typically meet much more challenging data 
types, challenging in a way that it is more difficult to apply algorithms and 
visualizations to detect insights in them. Those complex data types could be 
classified as relational, hierarchical, multivariate, textual, spatiotemporal, or 
trajectorial data, just to mention a few from a much longer list. 

• Relational data: Data objects can be related to some extent. These 
relations are expressed in relational data which can consist of binary or 
multiple relations between two objects. The data structure we are talking 
about in such a case is a graph [248] which can be undirected, in case 
the direction of a relation is irrelevant, or directed, in case the direction 
is relevant. If weights of the relations are of particular interest and the 
relations are directed, we call such a graph a network. For example, a 
social network, as the name suggests, contains data of a relational data 
type. The people are the data objects while the network itself, with all 
its connections, is given by the (weighted) relations between all those 
people. 

• Hierarchical data: If data objects are superior to some others causing 
some kind of parent–child relationship we consider this kind of data 
structure a hierarchy [196]. It consists of a root node (the topmost 
object), inner nodes (objects in-between), and leaf nodes (objects on the 
lowest hierarchy level). An example for such a hierarchy data type might 
be a file system on a computer which starts with a directory that contains 
other directories (subdirectories), again some other directories, and on 
the lowest level there are the files. There are two types of hierarchy data 
types which are containment hierarchies and subordination hierarchies. 
The file system is a containment hierarchy, while a company, a family, 
or a sports league hierarchy is based on the principle of subordination, 
not containment. 

• Multivariate data: Data that has the form of rows and columns with 
numerical values is denoted by the term multivariate data [116, 117]. 
Each row, that is, case or observation, contains values for each column 
under a certain condition, that is, a variable or an attribute. The value 
can exist between the minimum and maximum of a given scale while 
the scale can vary from column to column. An example for such a data 
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type would be an Excel table full of values representing the COVID-
19 attributes for each of the countries in the world. Each row would 
be a country and each column would refer to a value under a certain 
condition, that is, an attribute like the number of infected people, the 
number of vaccinations, the percentage of men/women, or the number 
of people currently in hospital due to COVID-19, just to mention a few. 

• Textual data: Such data might be interpreted as a sequence of characters, 
each having a meaning. The sequence has a well-defined order to make 
it interpretable. However, text can only form a semantic meaning if it 
is interpreted as a whole and not by inspecting its parts, letter by letter. 
Textual data could be interesting as an augmentation for visualization, 
for example, as labels, in cases in which a pure visual depiction is 
not enough or in cases in which the visual representation should be 
emphasized by additional textual information, such as in geographic 
or public transport maps. Textual data can occur in small pieces or 
even in larger ones, for example, including textbooks or source code 
of a software system that is typically hierarchically structured as well 
which shows us a classical example for the fact that data types can be 
composed of several other types like textual and hierarchical ones as in 
this scenario. 

• Spatiotemporal data: Two aspects might occur together in data, for 
example, space and time, making it of a spatiotemporal data type. This 
means that the data might be recorded in a spatial dimension like one-
dimensional (1D), two-dimensional (2D), or three-dimensional (3D), 
and the data might even change over time in those dimensions. An 
example would be eye movement data that is typically recorded during 
visually attending a 2D or 3D static or dynamic stimulus over time [152]. 
Also, traffic data could be considered as being of a spatiotemporal nature 
since traffic happens in certain geographic regions and typically varies 
from hour to hour, or day to day, depending on the temporal granularity 
and temporal effects like rush hours or anomalies like car accidents 
causing road blockages [111]. 

• Trajectorial data: Movements in a spatial region from location to loca-
tion, forming a sequence of spatial positions are creating data of a 
trajectorial data type. This data type is related to spatiotemporal data, but 
the spatial aspect might not consider 2D or 3D, it is more based on 1D 
curves in space. For example, a mathematical function might produce a 
trajectory since it describes a mapping from one dimension to another 
one, typically time to locations in a map or on a 1D scale. The stock 
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market over time could be interpreted as a trajectory, but for example, 
throwing a stone might be considered much more as a trajectory if we 
are interested in it in a physical experiment. Also vehicles and the human 
eye typically form trajectories over space and time, with the extension 
that they might stop for a while at certain locations. 

As already seen in the spatiotemporal data type, data are in many cases 
not static but are changing over time [4], making it a dynamic data type. 
The dynamics of the data bring into play new challenges since the dynamics 
of the data might be explorable after a certain time, making it some kind 
of offline data analysis problem, or the data might be explorable during the 
dynamics, making it an online, real-time data analysis problem [84]. The 
offline problem might be easier to solve since from an analysis perspective, 
we have more time to react on the data, meaning the analysis works as 
a post process. In the online, real-time scenario, the analysis techniques 
must keep pace with the incoming data chunks, transform and process them 
quickly, and provide real-time rapid solutions. This can actually become the 
bottleneck of a data analysis point of view, hence in typical situations not 
all data chunks are processed, just a representative one at a certain well-
defined periodically occurring point in time. Defining these representatives 
can also be a challenging problem. The biggest problem is to not lose any 
important information from the original data. We actually do not know 
beforehand what the important information is and might make a lot of mis-
takes here in one of the earliest stages of the data analysis and visualization 
process. 

Exercises 

• Exercise 2.1.1.1: Imagine you have an Excel table full of values. Which 
kind of data type would this scenario refer to? Which kind of data type 
do the individual entries refer to? 

• Exercise 2.1.1.2: People in a social network know each other, are send-
ing messages to each other, but might even be related by other attributes, 
for example, in a family hierarchy. Which kind of data types can you 
find in such a scenario? 

2.1.2 Data reading and parsing 

The data to be analyzed and visualized can occur in several forms. It might 
be existing in a data file or in a database for example. Those could be 
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a local file or database, or it could be accessed remotely via an internet 
connection, for example, by just making use of a URL to access the data. 
This might be the best option for real-time data that cannot be stored in 
typical scenarios due to its immense growth and change over time. Only 
the latest snapshots of the data or the data in a certain temporal distance 
to the current version of the data are still available. The remote access is 
beneficial if the data is huge [140], hence being stored on a server that 
is capable of keeping much more data than a standard personal computer, 
laptop, or notebook. On the negative side, we actually see the challenging 
problem of keeping the internet connection alive, stable, and able to access 
large amounts of data in real-time; otherwise, the application, that is, the 
data analysis and visualization tool, would suffer from various limitations 
and restrictions or it would not start at all. This is an important aspect for 
presentations in which the latest results have to be shown. If the internet 
connection is a problematic issue in a conference or meeting room, we might 
work with a local tool version, for the analysis and visualization itself, but 
even more for the data. However, if the data is too big to be stored locally, we 
should be aware of the fact that only the most important data pieces can be 
mirrored on the local machine and the interactive results can only be based 
on these data portions. The data might be pre-aggregated by summing up, 
averaging, classing, or finding a representative data element from a list of data 
elements. 

If the data is stored in a database we must take into account that there 
must be a library supporting the access of such a database, that is, the reading 
and writing of data entities. On the other hand, if the data is stored in a data 
file we must be aware that there are several data formats that the analysis and 
visualization tool must be prepared for. For example, a multivariate dataset 
might be stored in a comma-separated values (csv) file that could be opened 
by using a Pandas Dataframe [169], a Python concept with which it is possible 
to actually read such data with only a few lines of code. If the data is a 
hierarchical dataset, consisting of parent-child relationships like a file system 
or an NCBI taxonomy, we might be confronted by a Newick file format for 
which there are also libraries available that can read such a data type. In 
the most general data type scenario, we must define our own data reading 
functionality that parses the data, that is, each data entity, in corresponding 
data objects that are internally processed and stored to make them usable for 
the tool, maybe to analyze and visualize the data in the form of an interactive 
dashboard. 
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Exercises 

• Exercise 2.1.2.1: In many scenarios in the field of data science, we find 
the data to be analyzed in several nonlinked data files. How would you 
design a data reading and parsing functionality to get all the information 
you need from all of the data sources? 

• Exercise 2.1.2.2: How should a data parser be designed and implemented 
to be able to react on different data formats or even on changes in a given 
data format? 

2.1.3 Data storage 

Not only reading and parsing the data can be a major issue when designing 
and implementing dashboards for data analysis and visualization. Also stor-
ing might already be difficult, although storing just means placing the data 
somewhere on a big heap to read, parse, transform, and process it later on. 
Storing data is still important since users of a data analysis and visualization 
tool can decide to reduce the original dataset by applying filter techniques 
based on certain features and insights that have been found by applying such 
a tool. Not even the original data format has to be kept, but the tool might offer 
functionality that can transform the data into a better more tool-specific data 
format with which we can work much easier at later stages. For example, the 
stored data snippet might be loaded later again to show the found patterns 
and anomalies to an audience which has the benefit of not managing the 
whole big dataset again and again, which would lead to a waste of time. If 
the data is located on several data sources the tool might already link those 
datasets and puts them together in a linked data source that is then stored in 
an individual file in a certain format. Hence, the formerly heterogeneous data 
gets combined into a common data source that might be easier to reload in 
the tool again and again. 

Soon we are in a situation in which we have to deal with big data [140] for 
which profound knowledge about data handling aspects is required in order to 
achieve an interactively responsive dashboard. Many of the bottlenecks, from 
a usability perspective, are caused by a poorly running data handling, for 
example, a slow access to the data or performance issues when transforming 
the data, from one dataset to another one, in a different data format, maybe 
based on the input–output mechanisms of certain algorithmic concepts. 
However, most of the aforementioned problems come from the size and 
complexity of the original data, how it is stored in a data file or database, and 
how it is further modeled internally in tool-specific data structures. Big data 
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brings into play the five big V’s that are volume, variety, velocity, validity, and 
value [206]. Volume stands for the sheer size of data, for example produced 
by sensors, the internet, or the behavior of users who order articles, pay with 
credit cards, or travel around the globe. The data can even be so big that 
they cannot be stored anymore on traditional computers, hence they must be 
moved to special servers or even be split into different data sources at the cost 
of maybe reuniting them again for certain data analysis. Variety expresses that 
data can come in many forms, which can be structured or unstructured, hence 
creating an understandable data format from which the data can be accessed 
quickly and effortlessly is a major challenge. Velocity describes how fast we 
have to access the data, for example, if an algorithm must generate real-time 
analyses we only have fractions of milliseconds to respond to requests and the 
algorithms themselves have to operate very quickly. Validity focuses on the 
quality of data, for example, freeing the data from noise or add missing data 
entities that would hide certain patterns, and that might increase the runtime 
of algorithms. The value of the data is important to express which impact the 
results from the big data can have, that is, which value they produce for the 
academic or industrial community. 

Exercises 

• Exercise 2.1.3.1: What is the biggest dataset that you can store on your 
computer? How could you reduce the size and the complexity of the 
original dataset so that it fits again on your computer for a locally 
running tool? 

• Exercise 2.1.3.2: If we are talking about big data, we come across the 
five big V’s standing for volume, variety, velocity, validity, and value. 
Discuss which of the V’s is problematic for the implementation of a 
dashboard and which solutions exist to mitigate this situation? 

2.1.4 Data preprocessing 

One goal of data preprocessing is to get rid of many negative issues and 
problems in the original data, for example, removing irrelevant information 
that is not needed. Such data-cleaning processes can reduce the size and com-
plexity of a dataset before it gets passed through more advanced algorithmic 
analyses. Moreover, noise in the data typically leads to an unwanted size of 
the dataset. Hence, it would be beneficial to get rid of data noise, that is, data 
in data that has no meaning for data analysis. In contrast, there might even be 
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not enough information in the data. In such cases, the goal of a preprocessing 
step might be to close certain data gaps, for example, by interpolation, even 
measurement errors, or uncertainty effects whenever this is possible. In many 
situations, data preprocessing tries to improve or augment original data, but 
as a negative consequence, there could be the negative effect of removing 
relevant data elements unintentionally. Consequently, the preprocessing step 
must be taken with care to not lead to misinterpretations later on. The positive 
side effect of a data preprocessing can be that the interactive responsiveness 
of a data analysis and visualization tool gets much faster due to the fact 
that irrelevant information is removed or in the opposite effect, relevant but 
missing information is already added and reduces the runtime complexities 
of algorithms in the data transformation step. 

The data preprocessing typically happens before the algorithmic analyses 
and visualizations as the term pre already suggests. However, in some situ-
ations, the preprocessing cannot work properly without the interventions of 
human users. For example, it might be a good idea to show the data in its 
original form and let the users decide which algorithm to apply to remove 
noise in the data. In some situations, it might actually be the noise or a gap 
pattern that we are looking for, which is important for detecting insights in 
data or to confirm or reject hypotheses. Consequently, it would be a bad idea 
to automatically remove those patterns in a preprocessing stage leading to 
the effect that we would never see what we are actually interested in. A 
visualization tool should support both options, that is, showing the data in its 
original or preprocessed form. Even a difference between both forms might 
be useful to explicitly point at data elements that are not needed or that are 
missing on the other hand. 

Exercises 

• Exercise 2.1.4.1: What could be the reasons for erroneous data, missing 
data, or uncertain data? 

• Exercise 2.1.4.2: What are typical solutions to handle missing data 
elements in a given dataset? 

2.1.5 Data transformation 

In rare cases, we can start right away with original data that is read by the tool 
and parsed into tool-specific data structures. The more general situation is that 
we can read the data and know which data types it is composed of and which 
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Figure 2.1 Algorithms transform input data to output data. How this is done exactly depends 
on user tasks, that is, under which perspectives data will be explored. 

attributes it contains; however, this raw information is not useful to guide a 
data analyst to data patterns like correlations, trends, or anomalies. To reach 
the ultimate goal of a data analysis and visualization tool, maybe given as a 
dashboard, we have to transform the data into other formats that are typically 
stored internally. Such formats might uncover special relationships among the 
data elements, that is, formerly unrelated items when scrolling through the 
data, get internally linked by advanced algorithmic concepts. In most cases, 
the applied algorithms transform a given dataset into a different kind of data 
only carrying the required information, the one that supports data analysts 
to solve given tasks in order to confirm, reject, or refine given hypotheses 
about the original dataset. For example, a dataset consisting of a list of people 
with ages, genders, interests, and messages sent around might be transformed 
into a matrix of weighted relations telling to what extent certain person pairs 
are related. In the original list of people, it would be hard to identify any 
groups of related people; however, after applying an algorithm that takes the 
crucial information from the list and that transforms it into pairwise relations 
of people, we can solve tasks answering such person relation questions much 
easier. 

There are many examples from a long list of data transformations. All 
of them might be described by starting with an input dataset and modifying 
the input to an output that shows the original input data under a different 
perspective (see Figure 2.1). A few prominent examples are data aggregation, 
ordering and sorting, clustering, data mining, dimensionality reduction, or 
even deep learning approaches that try to train a model by making use of 
neural networks with the goal to learn certain patterns on which the algorithm 
can react in case new data entities come into play. There are various advanced 
algorithms that transform data, some are very fast, others might have a 
high runtime complexity for which profound knowledge is required to find 
heuristic approaches that quickly compute solutions that are not optimal but 
still acceptable in the sense that they create a local minimum. Examples 
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for such problems are the optimal linear arrangement problem [74] (also 
sometimes called MinLA problem for the minimum linear arrangement). It 
is challenging and very time-consuming to compute the optimal arrangement 
for a matrix of pairwise relations but a local minimum might be sufficient to 
detect clusters among the pairwise relations. Such NP-hard problems [102] 
are known to create challenges for a visualization tool, in particular, if the 
focus is on fast interactions. 

Exercises 

• Exercise 2.1.5.1: What are the benefits and drawbacks when transform-
ing data from its original form to a transformed one? 

• Exercise 2.1.5.2: Aggregation can be a form of data transformation 
that has the benefit of reducing the dataset size. How can a new data 
element stemming from an aggregation of several original data elements 
be computed? 

2.2 Visualization and Visual Analytics 

Figure 2.2 The visualization pipeline [177] illustrates how raw data gets transformed step-
by-step into a visual output. The user group can interact in any of the intermediate stages and 
can intervene to guide the whole algorithmic and visual exploration process. 

Data alone in all its varieties and data types with all data preprocessing 
steps and algorithmic transformations can only tell us half of the truth about 
certain phenomena from the real world. We can store any kind of data with 
incredible sizes and complexities but without seeing a visual output in the 
form of graphics, we, the human users, are not really able to derive insights, to 
see patterns, correlations, or anomalies [245]. Interactive visualizations [258] 
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are powerful tools with their expressiveness and information communication, 
making use of the perceptual abilities of the humans [115, 246] to rapidly 
detect visual patterns (see Section 2.2.2). Those visual patterns alone are not 
the final solution, they need to be interpreted by remapping them to data pat-
terns, with the goal to confirm, reject, or refine formerly stated hypotheses, or 
to build new hypotheses about the data that we would never think of without 
having seen the data in a visual form [139, 141, 143]. Such hypotheses are 
typically involving user tasks that guide the whole data exploration process 
(see Figure 2.2 for an entire visualization pipeline). For example, if we are 
interested in a maximum value in a dataset and we are trying to solve this 
visually, we have to solve a comparison task that tells us that a certain value 
is the largest one among all visually displayed values. 

Figure 2.3 Visualizations, interactions, algorithms, and the human users with their percep-
tual abilities build the major ingredients in the field of visual analytics. 

Visualization is powerful for problems for which we are not able to 
specify an algorithm with parameters [179]. The maximum search described 
above, on the other hand, can be solved by a pure algorithmic solution, 
by using a maximum finding algorithm. This is possible since we know 
the input and output parameters as well as the computation routine that 
computes a maximum from a given list of input values. In some situations, 
visualization alone and algorithms alone do not provide a solution to a 
given task. In those situations, we have to combine both powerful concepts 
described in a famous quote by Leo Cherne or Albert Einstein [92] as "the 
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computer being fast, accurate, but stupid while the human users with their 
perceptual abilities being slow, inaccurate, but intelligent. Together they are 
even more powerful." Such a synergy effect is reflected in the research 
field of visual analytics [139, 141, 143] that includes the human users with 
their tasks at hand, algorithmic concepts, visualizations, human–computer 
interaction, perception, cognitive science, data science, and many more to 
make it an interdisciplinary approach. The interdisciplinarity makes the field 
applicable to many real-world examples, typically involving big data [205]. 
Figure 2.3 shows some of the most important fields that are included in the 
interdisciplinary field of visual analytics [252, 251]. 

2.2.1 Visual variables 

Figure 2.4 Visual variables [180] describe from which core ingredients a visualization is 
built: Position, size, shape, orientation, hue, value, or texture are just the major ones from a 
longer list. 

If we talk about visualization we have to consider visual variables [21, 
22, 23]. Those are the fundamental ingredients of each visualization. They 
describe how the data is mapped to visual encodings, for example, color, 
size, position, shape, thickness, area, volume, angle, and many more [180] 
(see Figure 2.4). Using a different repertoire of visual variables for the same 
dataset can affect human perception and power when solving tasks at hand 
tremendously. The reason for this phenomenon is that some visual variables 
can be easier interpreted than others for a certain well-defined task, but again, 
this effect depends on many factors, with the perceptual abilities of the human 
users as one of the most important ones. For example, quantities can be best 
compared visually when they are mapped to positions in a common scale [73], 
better than when mapped to angles [122]. Figure 2.5 illustrates this issue 
with the example of bar charts and pie charts for the same set of quantitative 
values. In bar charts, the observers can solve the task of ordering the quantities 
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(a) (b) 
Figure 2.5 Pie charts are based on the visual variable "angle" or "area" while bar charts are 
based on "position" or "length" in a common scale [73] which seems to be better for solving 
comparison tasks for quantities. 

much faster and more accurate than in pie charts. One reason for this effect 
comes from the fact that humans can judge quantities shown with the visual 
variable position in a common scale, as used in bar charts much better than 
using angles as in pie charts for the same task. There are various such 
experiments investigating the task of which visual variable is best for a certain 
situation, that is, for a task at hand for a given dataset based on one or several 
data types. 

Such user experiments are important to figure out if a designed and imple-
mented visualization or visualization tool, for example, a dashboard, can be 
used reliably by a user group. For this reason, we can find many comparative 
user evaluations taking into account the visual variables as independent vari-
ables and measuring the response time and accuracy as dependent variables 
while confronting the users with typical tasks that have to be solved by 
using the corresponding visualizations as stimuli in the user experiment. Even 
interaction techniques [258] (see Section 2.5) integrated in the visualization 
tool are typically evaluated although those user studies are much more com-
plicated due to the dynamic stimuli, that is, changing representations of the 
visualizations and the typically more complicated and time-consuming tasks 
to be answered. Also, eye tracking [44, 123] is a powerful technology to 
find out where and when visual attention is paid to a visual stimulus, be it 
static or dynamic. However, the dependent variables that come in the form 
of spatiotemporal eye movement data and extra physiological measures are 
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much more challenging to analyze, hence visual analytics with a combination 
of algorithmic approaches, interactive visualizations, and the human users 
with their perceptual abilities (see Figure 2.3) and their decision makings 
plays a crucial role here to identify patterns, correlations, and anomalies in 
the visual attention behavior. This again can help to identify design flaws in 
the visual design, consequently, it also explores the combination of visual 
variables and their strength as a tool to analyze data. 

Exercises 

• Exercise 2.2.1.1: Histograms typically show the distribution of quan-
titative values on a (numeric) y-axis. Whereas the (numeric) x-axis 
stands for a scale on which the data is measured. An example would 
be the number of people with a certain income in dollars. Which visual 
variables can you generally identify in histograms? 

• Exercise 2.2.1.2: What are the benefits and drawbacks when using 
either bar charts or pie charts for visually representing a dataset with 
5/10/20/50/100 quantities? 

2.2.2 Perception and cognition 

Even if we followed most of the design rules to create interactive visual-
izations in a graphical user interface, we can never be absolutely sure if 
the designed visualization tool is useful in order to analyze and explore 
data. Most problematic from a visualization perspective are perceptual and 
cognitive issues, that is, those that come from the users’ side of view. Per-
ception is a powerful field of research that can be referred to the process 
of attaining awareness or understanding of sensory information [244]. In 
the field of visualization, this process is responsible for how well a human 
user can derive visual patterns from a visual stimulus that is composed of a 
multitude of visual variables like color, size, length, shape, position, area, 
volume, texture, and many more [115]. The combinations of those visual 
variables are responsible for creating a powerful visualization technique, one 
that encodes data in a visual form, interpretable by human users to remap the 
visual patterns to data patterns and, consequently, to knowledge and insights 
extracted from the given data. Color perception [198], as an example, can 
have a huge impact on how people extract information from a visual field. 
This research field has been studied for years, with the results of the research 
also being applicable to information visualization, that is, for perceptually 
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better designed graphical user interfaces linking visualization techniques in 
multiple coordinated views [200]. 

Cognition, on the other hand, describes how we process information in 
our brains, that is, how we think about the processes to react on certain 
patterns [31]. It is some kind of knowledge acquisition and thinking process 
but also using experience to understand while the senses play a crucial role to 
get the information we need [245, 246]. This mental action includes a variety 
of aspects and functions, combined in a clever way to derive knowledge and 
insights from a visual scene in a rapid manner, incorporating not only the 
powerful perception again but also attention has a big impact on how we find 
visual patterns and anomalies in a visual scene. By deriving those patterns 
and combining them, we use the brain, our short-term [183] and long-term 
memory [168], to react on the visual scene, for example, to judge about visual 
effects, to reason about what we see, to solve problems, to make decisions, 
or to just comprehend the visual scene and its linked aspects, for example, 
to present them and to explain them to a larger audience. Hence, without 
cognition, the humans were not able to extract new knowledge and insights 
partially based on old knowledge, that is, experience that we got over the 
years in maybe different living environments. 

In particular, visualizing outliers and anomalies hidden in a dataset can 
be effectively done by making use of the mighty principle of pre-attentive 
processing [115, 229]. By using this visual pop-out effect it is guaranteed 
that visual elements can be detected in a fraction of a second, the users pay 
visual attention to them quickly, that is, in case the task is to rapidly identify 
outliers that should be visually encoded in a much different way than the rest 
of the visual objects, that is, in a pre-attentively processable way. There are 
various such examples from the field of information visualization. The most 
obvious one might be a red-colored circle in a sea of blue-colored circles 
(see Figure 2.6) while the blue-colored ones are called distractors since they 
distract from solving a given (search) task which is the identification of the 
red target circle. In summary, one rule to create effective visualization tools 
is to include pre-attentive features when the task is to quickly and effortlessly 
spot the outlier(s) in a dataset that is visually represented in a certain visual 
way. There are various pre-attentive features [115, 229] like color, size, shape, 
hue, movement, and many more from a longer list. 

Also, visual memory [115] plays a crucial role in solving tasks by using 
visualization techniques. For example, for solving a comparison task, we 
might first look at a visual scene, store this scene or parts of it in our visual 
memory, and try to compare the stored scene with a new one. Without the 
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(a) (b) 
Figure 2.6 Visual objects can be observed while trying to solve a search task: (a) Only blue 
circles. (b) Blue circles with one red circle which is called the target object, whereas the blue 
ones are the distractors. 

(a) (b) 
Figure 2.7 Change blindness when comparing two images: From the original image in (a) 
there are several differences compared to the image shown in (b). 

power of the visual memory such comparison tasks could not be solved 
efficiently. Change blindness [181] is a concept that describes the challenge of 
detecting visual elements in one scene that are not present in another one, also 
illustrated in the famous error search images (see Figure 2.7). If the reason 
for not seeing the change is caused by the viewers’ missing attention, we 
call this inattentional blindness [203]. For information visualization, this is a 
mighty concept since we are comparing visual scenes all the time, be it for 
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comparing two static pictures or to identify changes in a dynamic scene that 
is composed of a sequence of static scenes, like in an animation or a video 
stripe. In a visualization tool, we might be looking for visual patterns, and we 
are typically trying to compare the observed patterns with patterns that we 
have seen a long time ago, that is, we learned visual patterns and got some 
experience with them. Hence, we actually build a growing repertoire of visual 
patterns mapped to some meaning which are requested all the time when 
we see new visual scenes. For comparing two visual scenes, we typically 
use short-term memory. When we make use of experience, that is, visual 
experience, we look up those patterns in long-term memory. 

(a) (b) (c) (d) 
Figure 2.8 Some of the popular Gestalt principles: (a) Reification: An incomplete visual 
object can be completed. (b) Invariance: A deformation of a visual pattern still allows to 
recognize the original object. (c) Multistability: A visual object might be interpreted in various 
ways (at least two ways). (d) Emergence: A visual object or a person can be detected from a 
noisy background. 

(a) (b) 

(c) (d) 
Figure 2.9 Visual objects can be grouped in several ways: (a) Symmetry. (b) Closure. (c) 
Similarity. (d) Proximity. There are even further laws like the law of good form, common fate, 
or continuity. 
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In Gestalt theory, we follow the principle of "the whole is greater than the 
sum of its parts" [114, 147]. This means that our brain is not trying to see 
visual scenes as composed of many small pieces, but it more or less tries to 
derive complete visual patterns immediately. This powerful strategy happens 
effortlessly and helps us to rapidly derive patterns. Moreover, experience 
also plays a central role in Gestalt theory since already-known patterns are 
found much easier and faster than patterns with which we do not have 
much experience. Figure 2.8 illustrates several of the Gestalt principles like 
emergence, reification, multistability, invariance, or grouping which can be 
categorized into the laws of proximity, similarity, closure, symmetry, com-
mon fate, continuity, and good form (see Figure 2.9). Most of them are really 
obvious, but their impact on information visualizations and how we detect 
visual patterns to explore data has a tremendous impact on the usefulness of 
the visualizations. This again also shows that experience plays a crucial role 
in the field of visualization. 

Figure 2.10 The Hermann grid illusion demonstrates how "visual objects" in the form of 
gray dots can pop out although there are no such gray dots included in the image. 

Also, optical illusions might occur in a visualization. For example, a 
color might be interpreted as a wrong color, and hence, a data value might 
be misinterpreted, like in the famous Rubik cube illusion [209]. Moreover, 
visual objects might occur where actually no objects are, like in the popular 
Hermann grid illusion (see Figure 2.10), in which gray dots might pop out at 
the intersection points of the white gaps between the black-colored squares. 
Optical illusions should be avoided whenever possible; however, in some 
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situations, we are not aware that they might occur. They can cause misinter-
pretation issues when trying to derive visual patterns from a visualization. 
There are various prominent optical illusions that can also accidentally 
be incorporated into an information visualization tool, for example, in a 
dashboard. Those can cause problems when judging visual elements for 
parallelism, length, color coding, movement and speed, and many more [85]. 

Exercises 

• Exercise 2.2.2.1: Find an example of error search images (Google image 
search can help). Look at them and try to find the differences between 
the original and the manipulated image. What is your search strategy, 
that is, how do you strategically solve this task (e.g., based on your eye 
movements)? 

• Exercise 2.2.2.2: Draw a Hermann grid (Figure 2.10) and check the 
impact of different colors, can you observe any difference depending 
on the color effect? Describe your findings! 

2.2.3 The role of the human users 

To check if visualization tools are really useful for tasks at hand, it is 
best to confront real users with such tools and measure how fast and how 
accurate they are. Moreover, additionally, we could record the humans’ eye 
movements [44] to get hints about visual attention that is paid to the dynamic 
and interactive visual scene [151]. User studies [93, 214] in visualization have 
been conducted a lot in the past, and many more will follow in the future. 
The biggest issue with such user studies comes from the fact that only a few 
parameters can be checked, which serve as the independent variables in the 
study. The recorded user behavior, be it as response times, error rates, or 
eye movements (or further physiological measures [25]), are the dependent 
variables and describe which impacts a change to the independent variables 
has on the dependent ones. Given a certain task to be answered by observ-
ing an interactive visualization, the independent-dependent correlation can 
consequently provide insights about certain drawbacks, or design flaws in a 
visualization tool. The developers of such tools try to get rid of the drawbacks, 
or at least a certain improvement to this situation might be achieved based on 
the users’ feedback. Apart from the independent and dependent variables, 
there are plenty of confounding variables that should be controlled as good 
as possible to avoid misleading or erroneous study results. 
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The human users typically have different experience levels which make a 
general claim about the usability of a visualization tool a difficult endeavor. 
We might have experts or nonexperts, young or old people, visually disabled 
people, and more groups of study participants with certain properties might 
occur. All those factors must be checked beforehand to understand what 
caused certain issues when trying to solve tasks and to make decisions, for 
example, when interacting with a dashboard. In visual analytics, this situation 
and the role of the human users get even more complicated since such systems 
are most powerful if an interplay between humans and machines is guaran-
teed, however, the decision-making is still partially on the humans’ side. The 
big challenge when using visual analytics is to build, confirm, reject, or refine 
hypotheses [139] that focus on answering one or several research questions 
by means of visually and algorithmically exploring data of any data type, 
homogeneous or heterogeneous data, structured or unstructured data, small 
or big data, and the like. Such user studies might run over several weeks of 
time, as some kind of longitudinal study, maybe splitting the visual analytics 
tool into several components that can or must be researched separately to 
avoid blowing up the study design due to an otherwise huge parameter 
space demanding for many study setup variations and hence, a really large 
number of study participants to cover all possible setup possibilities. From a 
study type perspective, there are various options, typically depending on the 
research questions under investigation, for example, controlled versus uncon-
trolled studies, small population versus crowdsourcing studies, field versus 
lab studies, standard versus eye-tracking studies, expert versus nonexpert 
studies, and many more. 

Exercises 

• Exercise 2.2.3.1: What are typical challenges for the task of recruiting 
people for a user study? How can we tackle those challenges to get as 
many study participants as possible? 

• Exercise 2.2.3.2: Describe the benefits and drawbacks of controlled 
versus uncontrolled user studies. 

2.2.4 Algorithmic concepts 

Algorithms are as important as visual representations for understanding data, 
based on certain user tasks like finding patterns, correlations, and/or anoma-
lies. If the data are shown visually, we rely on the perceptual strength of 
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the human’s visual system [115, 245] to detect visual patterns that can be 
mapped to hidden data patterns [65]. But in many cases, the data cannot just 
be visualized. It has to be transformed and processed by efficient algorithms 
(see Section 2.1) to bring it into a format that can be graphically represented 
to reflect those patterns. For example, if we are interested in temporally 
aggregated data, we might first compute the daily values from the hourly 
values, and then, as a second step, we visualize those aggregation results [4]. 
Without the aggregation step, it is difficult or impossible to visually solve 
the task of identifying a daily evolution pattern in the data. Also, the task 
of finding group structures in a dataset, for example, in a relational dataset 
like a graph or a network [194], is typically not solvable by visualizing the 
data in its raw form. A clever clustering algorithm [3] might compute such 
group and cluster structures beforehand and then, as a second step, visualize 
the clustering results [238]. However, no matter how powerful an algorithm 
is, it mostly produces another kind of dataset, from a given input dataset, 
that is too complex to understand it without a visual depiction of it. For 
a dashboard, it can become a problem if certain inefficient algorithms are 
included in the data analysis and visualization process, since they can cause 
some kind of delay in the data exploration. In some cases, the reason is just a 
wrong implementation of such algorithms, but in many cases, it could also be 
the case that the algorithm itself falls into a class of algorithms that has a high 
runtime complexity per se. Such NP-hard problems create algorithms that are 
not able to rapidly find an optimal solution to a data problem at hand. We need 
a heuristic approach to the algorithm that does not compute the optimum but 
a local minimum or maximum instead. Examples of such NP-hard problems 
are the subset sum problem [148] or the traveling salesman problem [204] 
among many others. 

Applying algorithms in visualization typically means waiting for the 
results of an algorithm, starting with inputs and producing outputs that are 
then visualized. Another challenge is to explore the algorithm during its 
runtime [62], maybe to understand why it caused a wrong result or why it 
is not well performing. The algorithm itself is then of interest as a dataset. 
It is not treated anymore as a black box but we more or less open this black 
box to look inside, to understand what is going on, step-by-step. This can 
be as simple as understanding how a sorting algorithm works [35] or how 
a shortest path is found in a network [62], for example, how a Dijkstra 
algorithm is walking from node to node via edge to edge in a network. 
The steps taken produce a complex dynamic dataset, typically focusing on 
a basic dataset like a graph/network (Dijkstra algorithm) or a list of quantities 
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(sorting algorithms). If the basic dataset is even more complex, for example, 
a neural network for which we are interested in how the weight function is 
modified to find a suitable model in the network we run into a challenging 
visualization problem due to the sheer size of modifiable parameters in such 
a network. This example brings into play a relatively new field of research 
denoted by explainable artificial intelligence (XAI) [164]. From a visual 
depiction of such dynamic processes, we have two major concepts which are 
animation or static representations of the dynamic data [233]. 

Exercises 

• Exercise 2.2.4.1: Imagine you have 5 (not sorted) natural numbers. Find 
a visual representation of those numbers and present the intermediate 
steps of a sorting algorithm applied to those 5 numbers. 

• Exercise 2.2.4.2: What is better for visualizing a running algorithm? 
Animation or a static representation of the intermediate steps. Discuss 
the benefits and drawbacks of each concept. 

2.3 Examples of Visualization Techniques 

Each dataset requires one or several visualization techniques to make it 
visually exploratory by the human observers [44]. There might be a multi-
tude of visualization candidates for the same dataset, but finally, the human 
observers with their tasks at hand decide if the chosen visualization candidate 
is powerful enough to support them in solving those tasks. For example, a 
quantitative dataset might be visually encoded into a bar chart if the task is 
to compare the quantitative values by means of the visual variables height or 
positions in a common scale [73]. If we have to deal with relational data, 
we might choose a node-link diagram [106] consisting of circular shapes 
for the objects and of straight lines for the relations between objects. This 
visual metaphor is much more complex than the bar chart metaphor due to 
the fact that the data type is much more complex than the quantitative data 
type. Moreover, due to this complexity, there are many more options for the 
encodings of the objects and the relations. For example, the objects might 
be encoded in circular, rectangular, or triangular shape with different colors, 
even indicating another categorical attribute on top of the objects, while the 
relations can be shown as straight, curved, orthogonal, tapered, or animated 
links [125] to mention a few. Even partially drawn links [60] might be an 
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option to avoid link crossings that cause visual clutter [202] if too many of 
them occur. This example shows that there is a multitude of combinations 
of visual variables, all focusing on providing a visual encoding of the given 
dataset that is powerful to support tasks at hand. 

Not only quantitative or relational data provide a basis for visualization 
candidates. Also hierarchical, multivariate, textual, and many more data types 
exist, even in combination, making the choice of suitable visualization tech-
niques limited, but also offering the opportunity to combine and link various 
visual variables to the visual output that someone desires. An even more 
challenging aspect of data visualization comes from the fact that nearly any 
part of a dataset might have an inherent temporal behavior [4]. This means 
that the data is not stable or static, but it is dynamically changing over time. 
This dynamics in the data brings into play comparison tasks, that is, data 
analysts are typically interested in exploring if there is some kind of trend in 
the data like a growing or decreasing behavior. In many cases, it is not a good 
idea to just use the visualization candidate for the static data and put it next 
to each other, one for each time step, to show the dynamics in the data. Such 
a small multiples representation [64] is easy to implement but suffers from 
visual scalability issues, and even more, the visual comparisons can become 
tricky because the visual observer has to move from one snapshot to the next 
one to spot the differences over time. However, still, many time steps can 
be seen in one view, which is much different from an animation of the time-
dependent data [233]. In many scenarios, the visual metaphor for the dynamic 
case is completely different from the one used for the static case of the same 
data type. 

In this section, we are going to explain various visualization techniques, 
each falling into a certain category that is given by the data to be visu-
alized. Simple data types are discussed in Section 2.3.1 while graphs and 
networks are the topic in Section 2.3.2 followed by a section on hierarchies 
(Section 2.3.3). Visualizations for data that exist in a tabular form, that is, 
multivariate or hypervariate data, are described in Section 2.3.4. Trajectories 
and possible visualizations for them are explained in Section 2.3.5, while 
textual data and its visual encodings are described in Section 2.3.6. 

2.3.1 Visualizing simple data types 

Even for simple data types, we can make a lot of mistakes during the 
decision for a suitable visualization candidate that shows the data in a visually 
understandable way. The tasks at hand are some guidelines for choosing 
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the right visual metaphor with the right visual variables. For example, if a 
dataset consists of five quantitative values and we want to compare those 
visually, we might choose a so-called pie chart that encodes each value 
proportional to an angle that spans a certain circle sector with an inscribed 
area. This visual variable is actually the problem here with this radial kind 
of visual metaphor [83]. Another visual variable, for example, the length or 
the position is much better for visualizing quantitative values if the task is to 
visually compare those values [73]. This aspect has been known for a long 
time already, but still we can find pie charts in newspapers and magazines 
for illustrating the results of an election for example. In most cases, the 
designer of such a pie chart typically starts adding the percentage values 
as textual labels to each of the circle sectors. This additional information 
should mitigate the challenging situation of judging the values by areas of 
circle sectors but why is visualization required at all if we start reading the 
labels instead of looking at the visual variables that should help us rapidly 
finding patterns. Actually, the only task that pie charts might support is the 
so-called part-to-whole relationship, that is, showing how much each value 
adds to 100%. In scenarios in which we have, let’s say, more than five 
quantities, we might also run into problems when judging the small values 
but even more, if the pie chart is rotated we might get problems for judging 
how large a value is added to the 100% even if only a few values exist in 
a dataset. 

Looking at the example visualization in Figure 2.11, we can see that four 
quantities are visually represented as circle sectors with different areas (and 
angles). Additionally, the textual labels representing the percentage values 
help to solve a comparison task, but what would happen if we let away those 
labels? For the light red sectors it might be easy to judge and compare their 
sizes reliably but the darker red sectors differ in size only a little bit (just 
1.8% difference), making it perceptually hard to explore them for their size 
difference with a pie chart. On the other hand, visualizing the same dataset 
as bar charts make a big difference in the response time and accuracy for 
the task of comparing the values for their sizes, in case we conducted a 
comparative user study. The difference comes from the visual variables in 
use. In the pie chart, the visual variables angle and circle sector area are 
used, which make it perceptually more difficult to solve this comparison 
task than the visual variables used in the bar chart which are bar length or 
even just the position of the tallest point of each bar. The phenomenon of 
having various options for visualizing data can be found in nearly any visual 
encoding of a dataset. Finding out which visualization is best for the task at 
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Figure 2.11 A pie chart is one way to visualize quantities, but a bar chart makes it easier to 
compare the values due to the fact that it encodes the quantities in the bar lengths instead of 
the circle sector angles [73]. 

hand can be done by conducting a user study, varying the visual variables as 
independent variables and measuring the response time, accuracy, or even eye 
movements [44] as dependent variables. However, this generates another kind 
of dataset, in the case of eye movements, a spatiotemporal dataset for which 
advanced visualization techniques and algorithmic concepts are required to 
identify patterns [8]. 

Apart from quantitative data, we can also look at ordinal data for which 
an order of the individual data elements is required. Such an order is typi-
cally visually encoded by the position on the display, for example, showing 
the bigger ones on top and the smaller ones at the bottom of the display. 
Categorical data describes the fact that data elements might belong to one 
or several categories or classes. In a visual encoding, such categories are 
typically shown by a grouping effect using the Gestalt law of proximity or 
similarity, sometimes even visually drawing borders around visual elements, 
for example, when applying a clustering algorithm that does not create clear 
group structures but produces some group overlaps. Hence, another visual 
variable has to be used to indicate the groups and subgroups. 
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Exercises 

• Exercise 2.3.1.1: Imagine you have counted the number of cars and their 
brands crossing a certain measurement station at a motorway. Design a 
bar chart that shows the number of cars per brand. 

• Exercise 2.3.1.2: If you have additional time information, for exam-
ple, hourly, daily, or weekly measurements. How would you design 
a diagram that lets you compare trends of such numbers over 
time? 

2.3.2 Graph/network visualization 

Relational data exist in many forms but always have one aspect in common. 
The idea behind such data is that it connects objects or people, that is, if 
those stand in some kind of relation, we speak of relational data, or a graph to 
express it in another way [18, 47]. For example, people might communicate 
via a social network or they might write emails to exchange information with 
each other. This scenario makes the people to the vertices of a graph and 
the number of messages or the extent of the messages to weighted relations, 
also called edges in the terminology of graph theory [84]. There are lots of 
options to visually encode such vertices and edges [47], typically focusing 
on identifying paths in a graph or exploring certain structures [106], so-
called clusters. However, to reach the goal of a good visualization of a graph, 
or also called network if the edges are directed and weighted, one has to 
follow aesthetic graph drawing criteria [190, 191, 192] that describe how 
nice a graph looks like or even more, how well a graph can be read for 
paths and clusters, hence aesthetics is understood in the sense of readability 
instead of pure beauty and aesthetics [38]. Prominent aesthetic criteria in 
graph drawing and graph visualization are the minimization of link crossings, 
the minimization of link lengths, the minimization of node-link, link-link, 
and node-node overlaps, the maximization of symmetries in a graph, the 
maximization of orthogonality (i.e., size of angles at link intersections), or 
the minimization of link bends (if those are used) which is just a short list of 
such criteria [192]. 

Visualization techniques for graphs exist in two major forms: node-link 
diagrams and adjacency matrices (see Figure 2.12). Node-link diagrams 
model the vertices as visual representatives of certain shapes like circles, 
triangles, or squares [47], while the edges are encoded as straight lines (with 
or without arrowheads for indicating the direction (see Figure 2.12(a))) of a 
certain thickness, tapered, partial, curved, or orthogonal links, just to mention 
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(a) (b) 
Figure 2.12 Two different ways to visually encode relational data while the edges of the 
graph have directions and weights, also known as a network [106]: (a) A node-link diagram. 
(b) An adjacency matrix. 

a few [125]. Adjacency matrices, on the other hand, represent each vertex 
twice in a row and column of a matrix while the weighted edge is visually 
encoded as color-coded cell at the intersection point of the corresponding 
matrix row and column (see Figure 2.12(b)). The benefit of such matrices is 
that they scale to millions of vertices and edges since they do not produce link 
crossings and can even be drawn in pixel size; however, reading paths from 
such a representation is challenging, even impossible [106]. But identifying 
clusters can be done easily, in case a matrix reordering algorithm has brought 
the matrix into a good structure beforehand [20], typically requiring advanced 
algorithms with high runtime complexities. Node-link diagrams are good at 
showing paths in a network but, on the other hand, they suffer from visual 
clutter [202] if too many links are crossing each other. There are even further 
visualization techniques for graphs, for example, adjacency lists [121], but 
also combinations from node-link diagrams and adjacency matrices are imag-
inable and might have their benefits for certain user tasks. Famous examples 
of such hybrids are MatLink [118] or NodeTrix [119]. 

Exercises 

• Exercise 2.3.2.1: Think about your own social network, for example, 
Facebook, Twitter, or LinkedIn. How can you visually represent with 
whom you and the others from your network are connected/connected 
most? 
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• Exercise 2.3.2.2: How do you represent different kinds of relations 
between you and your friends, for example, knowing each other, sending 
emails, calling, family relationships, and so on? 

2.3.3 Hierarchy visualization 

Figure 2.13 A hierarchy can be visualized as a node-link tree with a root node, parent nodes, 
child nodes, and the nodes on the deepest level being, the leaf nodes. 

Hierarchies [211, 212] can come in two general forms, either as some 
kind of containment hierarchy or based on the principle of subordination. A 
containment hierarchy leads, as the name expresses, to containing elements. 
The most popular example of this is probably a file system in which files 
are contained in subdirectories and again contained in other subdirectories, 
actually everything is contained in a root directory. Also, geographic regions 
might be considered as some kind of containment hierarchy. Regions are 
contained in countries, countries in continents, and all continents belong to 
the earth. On the other hand, if we look at family hierarchies [63] composed 
of grandparents, parents, and children, we are confronted by the principle of 
subordination which also exists in a company structure or a league system, 
for example, the football leagues which consist of several levels depending 
on the professionality and strength of the teams. 
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(a) (b) 

(c) (d) 
Figure 2.14 At least four major visual metaphors for hierarchical data exist coming in the 
form of: (a) A node-link diagram. (b) An indented plot. (c) A stacking approach. (d) A nested 
representation (in which only the leaf nodes are shown). 

Hierarchical data can be stored in a so-called Newick format, which 
is some kind of nested parentheses format with semicolons separating the 
elements on the same hierarchy level. Each hierarchy has in common that 
it has a root node, parent nodes, and child nodes which stand in a parent-
child relationship. Nodes on the same hierarchy level with the same parent 
are called sibling nodes, while nodes on the deepest level in the hierarchy are 
called leaf nodes or leaves for short. Nodes that are neither a root node nor a 
leaf node are called inner nodes. Each inner node has a number of children 
which is expressed by the so-called branching factor. Actually, a hierarchy 
can be infinitely deep, but for reasons of simplicity, we only look at finite 
hierarchies, in this book, this is, they consist of a finite number of nodes (see 
Figure 2.13 for a node-link diagram of a hierarchy). 

For the visualization of hierarchies, there actually exist four major 
metaphors which are following the principles of indentation, nesting, stack-
ing, or linking (see Figure 2.14). Actually, also hybrid forms are imaginable, 
which combine two or more of those hierarchy visualization metaphors. 
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Typical tasks in hierarchy visualization [224] are to visually explore if 
a hierarchy is balanced, how deep it is, how the branching factor is, or 
which subhierarchies look similar or dissimilar. Also data attachments can 
be explored in different hierarchical granularities, for example, water levels 
in a river system (which is hierarchical by nature) [65] or software metrics in a 
software system (in which the hierarchy is defined by the developers) [39, 54]. 

Exercises 

• Exercise 2.3.3.1: Create a family tree of all the people from your own 
family like father, mother, grandfathers, grandmothers, sisters, brothers, 
and so on. 

• Exercise 2.3.3.2: Design a good visualization for the hierarchical file 
system on your computer. How do you show the file sizes and the file 
type in the hierarchy at the same time? 

2.3.4 Multivariate data visualization 

Multivariate data typically occurs if we have to deal with tables [116], for 
example, given as an Excel table. Such tabular data consists of rows and 
columns while the rows are so-called observations or cases, and the columns 
contain the attributes or variables. At the intersection cells of each row with 
a column, we can find entries that can come in numerical, categorical, or 
textual form, to mention the most important ones. The form actually gives 
a hint about the data type each column attribute is based on. We talk about 
univariate data if just one column exists, bivariate data if two columns exist, 
trivariate data if three columns exist, and multivariate data if more than three 
columns exist. 

The most important task to be solved when we work with multivariate 
data is a correlation task. This means we are asking the question whether 
two or more of the attributes stand in a correlation behavior, that is, for 
example, the values under one attribute are behaving in a similar or dissimilar 
way to the values of another attribute. If the values under one attribute are 
increasing while those of another attribute are decreasing, we speak of a 
negative correlation, if both behave in the same or similar way we denote 
this behavior by a positive correlation. There are even finer differences in 
the correlation behavior such as exact linear, strong linear, homoscedastic, or 
heteroscedastic behavior [249], just to mention a few. 
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(a) (b) 
Figure 2.15 Visualizations for multivariate data: (a) A scatter plot matrix (SPLOM). (b) A 
parallel coordinate plot (PCP). 

Visualizing such data is challenging, but there are some prominent visual 
encodings like histograms [185] (for univariate data), scatter plots [157] 
(for bivariate data), scatter plot matrices (SPLOMs) [78], parallel coordinate 
plots [130], or glyph-based representations [138] (for tri- and multivariate 
data) (see Figure 2.15). Scatter plot matrices are based on simple scatter 
plots and allow comparisons between all pairs of attributes as long as there 
is enough display space to show all the individual scatter plots of the scatter 
plot matrix. Parallel coordinate plots use parallel vertical axes to show the 
attribute values and polylines in-between. Those plots only show subsequent 
axis comparisons and typically suffer from visual clutter [202] caused by 
line crossings. Finally, glyph-based representations only show one glyph per 
case and make comparisons impossible; hence, correlation tasks are more 
difficult to solve than in scatter plot matrices or parallel coordinate plots in 
which the individual lines are integrated into the same diagram, and this is 
not the case in classical glyph-based visualizations like Chernoff faces [72], 
leaf glyphs [99], or software feathers [17]. 

Exercises 

• Exercise 2.3.4.1: Compare typical visualizations for multivariate data 
like parallel coordinates, scatter plot matrices, and glyph-based repre-
sentations like Chernoff faces, software feathers, or star plots. 

• Exercise 2.3.4.2: Imagine you have an Excel table with multivariate data 
that is changing from day to day. Develop a visualization technique with 
which we can visually explore changes and trends in the correlation 
patterns. 
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2.3.5 Trajectory visualization 

Moving objects, people, animals, or humans’ eyes create some kind of trajec-
tory [107]. That means they can rest for a while at a certain point in space, 
and then they slowly or rapidly move to the next position at which they might 
rest again for another while of another temporal extent. The challenging issue 
with trajectories is that a visual depiction can generate occlusion effects and 
visual clutter [202] very soon, in case one trajectory is quite long, and the 
same spatial regions are visited from time to time, or we have to deal with 
various trajectories that follow similar paths in space, leading to problems to 
take one for the other due to many crossings and overlaps of the line segments 
when visualized as a line-based representation. Modifying the shape of the 
trajectories to reduce clutter or to show similar movement behavior, for 
example, by edge bundling [124, 126], can be a powerful idea, but the original 
data is spatially changed, and hence, there is some kind of lie factor in the 
data-to-visualization mapping. 

Figure 2.16 A static stimulus overplotted with a scanpath, that is, a sequence of fixation 
points. The sizes of the circles typically visually encode the fixation duration, that is, how 
long the eye fixated on a certain point in the visual stimulus. 
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One prominent application field for trajectory data comes from the 
research in eye tracking [87, 123]. An eye tracker [256] is a device that 
records fixations of people’s visual attention and saccades between two con-
secutive fixations [56], that is, rapid eye movements. Each fixation can have 
a certain fixation duration while the saccades in-between more or less rapidly 
move between those fixations without acquiring any meaningful information 
from the visual stimulus (see Figure 2.16). Also, bird or general animal 
movements [146] are of particular interest for trajectory visualizations since 
birds might travel far distances from one continent to another one due to 
changing seasons, weather conditions, and the modifications in food offered 
by mother nature. Biologists are interested in the birds’ traveling strategy to 
understand how they generally behave, for example, whether they are exposed 
to anomalies due to changes in their natural environments. The bird behavior 
might give insights into effects that are hardly recognizable without such 
trajectory data. There are various application examples in which trajectories 
play a crucial role, however, visually exploring such spatiotemporal data 
over space, time, and the objects, people, or animals involved in is a really 
challenging task. 

Exercises 

• Exercise 2.3.5.1: Take into account your own moving strategy over one 
day from starting the day until going to bed in the evening. Design a 
trajectory visualization of such a dataset and add your own data to a 
geographic map. 

• Exercise 2.3.5.2: Why is it difficult to visually compare thousands of 
trajectories over space and time? Can you imagine algorithmic solutions 
for this problem that support the visualization? 

2.3.6 Text visualization 

Text is probably occurring most frequently in our everyday data lives. We 
would not consider text as data, and it is more used to communicate, to 
exchange information among people. But text can also be taken into account 
from the data perspective, for example, trying to find patterns in it like word 
frequencies which is a simple task, to explore semantic meanings of text 
fragments which turn out to be much more challenging. Hence, modern 
neural networks are powerful techniques to support data analysts in such 
semantic-finding tasks. From a visualization perspective, there exists various 
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text representations, with a word or tag cloud [51, 133] as one way to show 
frequent words in a text corpus (see Figure 2.17). More complex ones use 
pixel-based representations [142] to show the distribution of special text frag-
ments in a larger text corpus. For example, in source code of a larger software 
project, one might be interested in the occurrences of special programming 
language-specific keywords, for example, indicated by color coding as in the 
SeeSoft tool [91] or in a triangular shape for code similarities [58]. 

Figure 2.17 A text corpus can also be split into words and their occurrence frequencies 
while the common prefixes can be used to reduce the display space in use for showing a word 
cloud, known as a prefix word cloud [51]. 

If we consider DNA sequences as textual data, one task might be to 
identify similar subsequences in several of those DNA sequences. This can 
hardly be done purely visually. We need algorithms that are able to rapidly 
compare several such sequences and maybe align them in a way that sim-
ilar subsequences are placed on top of each other in a so-called consensus 
matrix [71]. These multiple sequence alignment algorithms [137] can work 
on any kind of text fragments, for example, as a naive way to detect plagiarism 
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in two or more texts. However, the pure algorithmic solution is only half 
as valuable if it is not supported by extra visual encodings applied to the 
alignments. For this reason, color coding can be of great support to quickly 
recognize similar subsequences and also anomalies, that is, subsequences that 
are not fitting in the text structure. 

In general, all of the data we described in this section can have a time-
varying, that is, dynamic nature. Visualizing the dynamics in the data is 
of particular interest for researchers, for example, to set the current state 
in context to the past, but also to learn from the past to predict the future. 
The last idea could involve deep learning and neural networks to solve such 
classification or prediction tasks reliably and efficiently. However, visual 
depictions of the time-varying data [4] are still important, even if algorithms 
have to process the data to generate structures and insights in it, maybe on 
several temporal granularities. 

Exercises 

• Exercise 2.3.6.1: Imagine you have two different texts of a certain 
length. How could you design a visualization that shows similar text 
passages? 

• Exercise 2.3.6.2: Could a matrix visualization be useful to compare two 
or more text fragments? How can the matrix be extended to compare 
more than two text fragments? 

2.4 Design and Prototyping 

Apart from the visualization techniques for the individual data types we 
should take into account the visual and interface design rules to create a user-
friendly and powerful visualization tool equipped with various interaction 
techniques [258] (see Figure 2.18 for an example of a hand-drawn user 
interface). The design is typically guided by user tasks, that is, hypotheses 
about the data that have to be confirmed, rejected, or refined [139, 178]. To 
find answers to these hypotheses, the users of such a tool have to solve tasks 
from a certain task group, for example, search tasks, counting tasks, esti-
mation tasks, comparison tasks, correlation tasks, and many more, typically 
depending on the application field the data stems from and the users in the 
form of experts or nonexperts who are trying to find hints about their data 
problems at hand. The design of a visualization tool or dashboard is not just, 
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including the user interface with buttons, sliders, text fields, and so on, but 
also the visual design that is required to create powerful and perceptually 
useful visualizations for the tasks at hand. Those user interface components 
as well as the visualizations have to be arranged in a user-friendly and well-
designed layout, in the best case a dynamic one, allowing the users to adapt 
the layout on their demands. Moreover, interaction techniques have to be 
taken into account that connect and link the individual components. This 
means the interface components must be connected in a meaningful way but 
even the interface components with the visualization techniques, as well as 
the visualizations themselves in case they are shown as multiple coordinated 
views [200] to provide insights on the visually encoded data from several 
perspectives. 

Figure 2.18 A hand-drawn graphical user interface composed of several views and perspec-
tives on a dataset (permission to use this figure given by Sarah Clavadetscher). 

Creating such a user interface with all of its ingredients at the right 
places requires in understanding some rules about prototyping, meaning 
either drawing the dashboard by hand, as some kind of sketch or mockup, 
or if the designer is familiar with external tools, the dashboard might even be 
designed in a computer-supported style. However, drawing it by hand typi-
cally means more flexibility for the designer than using a computer program 
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(see Figure 2.18 for an example of a hand-drawn graphical user interface). 
This section is organized as follows: In Section 2.4.1, we describe visual 
design rules and which aspects are important when creating a dashboard from 
the visual perspective. Section 2.4.2 illustrates some no-goes in visualization 
and which concepts exist to get rid of them or at least improve the situation. 
The interface design rules are explained in Section 2.4.3 while we describe 
how a user interface can be created step-by-step in Section 2.4.4, also looking 
into mockups, hand drawings, sketches, wireframes, and prototypes. 

2.4.1 Visual design rules 

Creating visualization techniques for a given dataset can be a simple but even 
a challenging task, depending on how the dataset is structured, which data 
types it is composed of, and which role the tasks at hand will play. No matter 
how complicated the creation task gets, we should definitely follow some pre-
defined visual design rules to avoid creating diagrams that become useless or 
lead to difficulties when interpreting the visually encoded data [232]. Some 
of the visual design rules only occur in very specific situations, but we should 
be aware of them during the creation process already and not afterward to 
guarantee a more efficient design process. One general problem comes from 
the fact that we have to design a visualization that allows us to rapidly detect 
visual patterns [245] that gives us a chance to explore the visually encoded 
data. Hence, the visual design should follow a rule that data interpretation 
gets supported in a visual way. The second but less prioritized aspect during 
the visual design phase is aesthetics. A diagram should look aesthetically 
pleasing [38] because that it is attractive to the eye and people like to watch 
it. This might help us to remember a specific diagram much better, that is, 
to build some kind of mental map. The challenge with data interpretation 
and aesthetics [38] comes from the fact that these criteria stand in a so-
called trade-off behavior. The better we can interpret the data visually, the 
less aesthetics is involved, and vice versa. Therefore, the best strategy is to 
first focus on data interpretation before we try to make it nicer. 

It is important to let the data speak [34], that is, support storytelling [186]. 
This also means that we should not immediately start with summaries and 
aggregations, a typical scenario for statistics focusing on deriving aggregated 
values from a dataset like a median, a variance, or a standard deviation for 
example. Showing the data in its complete nonaggregated form can help 
to identify data gaps, without guiding the observer in a wrong direction, 
causing misinterpretations of the data. A person inspecting a diagram can 
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hence interpret the data in its raw form and try to interpret the data gaps, 
asking questions about why the data elements are missing and in the best 
case allowing to even fill the gaps with missing values. A picture of the data 
is of great support to solve those tasks since a picture can say more than a 
thousand words [88], in case it is designed in a proper and accurate way. 
Hence, it is a good advice to use graphics whenever possible, be it for data 
exploration or for presenting and disseminating the obtained results. Pictures 
can even visually encode many aspects about data, like numerical values from 
several attributes, in a very small display region, making it a visually scalable 
approach. 

Figure 2.19 A diagram that includes axis labels, scales, guiding lines, and a legend. 

Even if we created a good diagram to show the data, there are very 
important ingredients that one should never forget. For example, adding 
labels at axes if there are some. Hence, this is important to set the data into 
some general context. Such labels could express meta data like physical units 
for example, or even numerical values for the scale in use, or even several 
scales in use. It makes a difference if we inspect the diagram focusing on 
meters or kilometers. Moreover, the scale should be including guiding lines 
that do not occlude or clutter [202] the rest of the diagram. Such guiding lines 
help the eye to solve comparison tasks, for example, when reading several 
values in a diagram (see Figure 2.19 for a simple diagram following the 
visual design rules). In general, diagrams need words to make them even 
more understandable, but if too many words are used, this might again be 
counterproductive. Such words or labels should be distinguishable and they 
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should be readable, meaning choosing a good size and font style. If too many 
visual variables are integrated into a diagram, and they might be unclear when 
just looking at the diagram, legends should be placed next to the diagram 
to explain the data-to-visualization mapping, for example for the values and 
categories in use and which sizes, lengths, or colors are encoding the data 
values. Color is one of the most applied visual variable in a visualization, but 
picking the wrong color scales can lead to misinterpretations when trying to 
interpret the data by looking at a visual depiction, for example, the often cited 
rainbow colormap [32] could cause problems or colors that are problematic 
for people who have color vision deficiencies or who are color blind [174]. 
Color perception [260] is a research field on its own. Similar rules hold 
for scale granularities meaning values for minimum and maximum should 
be derivable from the legend. All in all, the storytelling is one of the most 
important issues when designing a good visualization. A diagram should be 
readable just like a good book, following a red line, chapter by chapter, with 
a final Aha effect. 

Exercises 

• Exercise 2.4.1.1: Create a scatterplot for bivariate data with labels, axis 
descriptions, and scales, together with guiding lines for the scales. 

• Exercise 2.4.1.2: Can you create a diagram that includes more than one 
scale on one axis but that is still usable and readable? 

2.4.2 No-goes and bad smells 

There are lots of design aspects that have a negative impact on data interpre-
tation. Such no-goes have to be avoided whenever possible, in cases, we are 
aware of them. Hence, it is of interest to study this section since it describes 
some of the major problems, we can be confronted with when designing a 
visualization. Increasing the aesthetics and beauty of a visualization does not 
necessarily mean that it also gets more effective from the data interpretation 
side, meaning with such a nice visualization it might still be difficult to 
understand the visualization and to find visual patterns that can be remapped 
to the data patterns, with the goal to explore the underlying data. When 
possible, we should avoid the three major problems that we identify as visual 
clutter, the lie factor, and chart junk (see Figure 2.21) [202, 232]; however, 
in some cases it is hard to completely mitigate such a situation, for example, 
if too many visual elements are present, and we have to show all of them to 
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Figure 2.20 Three of the major design problems come in the form of chart junk, the lie 
factor, and visual clutter. 

understand the data or if the data values do not allow to encode them in a 
visual variable in a proportional data-to-visualization manner, maybe due to 
the lack of display space. 

(a) (b) (c) 
Figure 2.21 Design problems can occur in several ways: (a) Visual clutter. (b) A lie factor. 
(c) Chart junk. 

Visual clutter is "the state in which excess items or their disorganization 
lead to a degradation of performance at some task" [202]. As the definition 
says, there could be too many visual objects or a certain number of them 
might not be well organized, that is, visually structured to derive some 
meaning and knowledge from them. This effect typically occurs in line-
based diagrams containing many line crossings and overlaps. The lie factor 
describes the situation that the effect in the data is not the same as in 
the corresponding visualization, leading to visual distortions and hence, to 
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misinterpretations of the data. The following formula expresses the general 
lie factor l for a sequence of values vi, 1≤i≤n, vi ∈ R, n  ∈ N 

g
l : G × D, (g, d) → 

d 

while g is the size of the effect in the graphics and d is the size of the effect 
in the data. Moreover, the size of an effect is given by the ratio vi−vi−1 while vi−1 

vi is always the second value and vi−1 is the first value in the ordered values. 
The lie factor should be between 0.95 and 1.05 to avoid distortions. Chart junk 
describes the effect of having "overdesigned" a diagram, meaning the same 
data variable is visually represented in several visual variables. This issue can 
cause misinterpretations, mostly if 3D is used for an originally well-designed 
2D diagram. One of the rules here could be: "Less is more," a fact that might 
refer to Tufte’s principle of minimalism or minimalistic design, also bringing 
into play the so-called data-to-ink ratio explaining the idea of using as less ink 
as possible for visually encoding data elements, or the concept of maximizing 
the data-to-ink ratio. Ink should not be wasted for visual objects that we do 
not associate with data elements, and there should also not be any redundant 
elements, maybe leading to visual ambiguities. The chart junk and data-to-ink 
problems are oftentimes found in so-called infographics that try to include 
specific application domain aspects into a diagram, trying to put the diagram 
into a certain application context, but in most cases, decreasing the visual 
usefulness of such a diagram by reducing the data interpretability aspect, for 
example, perspective distortions. 

Some further design aspects are to keep the visual design consistent and 
to not include unnecessary modifications of the visual scale, for example 
by using several scales in several diagrams depicting the same dataset. For 
dynamic, that is, time-varying data, we should be careful with animated 
diagrams [233] since those create a challenge for comparison tasks. Nonan-
imated, that is, static, diagrams show most of the dynamic data in one view 
and give an observer time to inspect all shown time steps while reducing 
the cognitive effort when comparing the data elements over time. This refers 
somehow to the visual information-seeking mantra: Overview first, zoom and 
filter, then details-on-demand [216]. In an animation the overview about the 
data is completely lost. It is also important to inspect the data from different 
granularity levels, bringing into play issues like overview-and-detail [100] or 
focus-and-context [128]. 
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Exercises 

• Exercise 2.4.2.1: Find a visualization or a diagram on the web that 
suffers from visual clutter, chart junk, and/or the lie factor. Describe in 
which form the visual design problems can be found in the visualization 
or diagram. 

• Exercise 2.4.2.2: Given a sequence of natural numbers v1, . . . , vn. 
Design a diagram that visually encodes such values with and without 
an explicit lie factor. 

2.4.3 Interface design rules 

Figure 2.22 A hand-drawn mockup of a graphical user interface (permission to use this 
figure by Sarah Last). 

Not only do the visualizations have to be taken into account when 
designing and implementing a dashboard for interactive data visualization, 
but even more the user interface [109] in which the visualization tech-
niques are integrated as well as additional user interface components for 
applying interactions, starting algorithms, or just adapting parameters (see 
Figure 2.22 for a hand-drawn mockup of a graphical user interface). A user 
interface is a complex playground that has to follow a certain layout, to 
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help preserving the mental map when finding user interface components 
easily and rapidly, to reduce the cognitive efforts in case we have to start 
searching for the important things all the time. The eight golden rules of 
user interface design [217] describe a good way to follow the most important 
principles, just like a checklist, when thinking about a user interface, even 
in the phase of creating a sketch or a mockup already. The challenging 
issue with a user interface for visualization comes from the fact that it is 
not only dependent on those eight rules, but even more on the design and 
interactive functionality of the integrated visualizations. It may be noted that 
there are various design rules when it comes to designing user interfaces, 
in particular, graphical user interfaces (GUIs) but many of those rules are 
also dependent on the application scenario. For example, designing a user 
interface for medical applications [75, 76] is much different from one for 
fraud or malware detection [67], but there is some kind of common design 
rule set that holds for any kind of user interface. Finally, a user evaluation with 
or without eye tracking [8, 152, 153] is required to find hints about usefulness, 
user-friendliness, and performances in terms of response times, error rates, or 
even eye movements [26] with additional physiological measures [25]. Also, 
the qualitative feedback from the users in form of verbal interviews, think-
aloud, or talk-aloud, even gestures, can be of great support for the designers, 
in particular for visual analytics tools [27]. 

One of the first criteria is to keep the design consistent. This holds for 
the color coding, for the shapes, for the presentation speed when using 
animations [233], actually for any kind of visual component that includes 
some kind of visual feature. Also certain actions and interactions should be 
consistent for similar scenarios, for example selecting a visual element should 
always work in the same way, no matter which kind of visual component 
the selection interaction actually is applied on. Consistency is important 
since it reduces the cognitive efforts [231], that is, users do not have to 
rethink again and again for the same or similar processes, meaning the mental 
map is somehow preserved [9, 10] during a visual exploration strategy. An 
identical terminology should also be chosen for labels or textual output that 
is produced in the interface, but not too much text should be shown to 
avoid an information overload. Menus, descriptions, error messages, and the 
like should follow the same rules, for example font sizes, font faces, font 
types, and the like. Also the layout in the components and subcomponents 
should be the same, even the borders or distances of the components to 
each other, exploiting the Gestalt laws of proximity and similarity [147]. The 
universal usability is also of interest, for example, a user interface can be used 
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by Europeans, Asians, or Americans, but all having different backgrounds, 
experiences, languages, signage, symbols, and the like [156]. The design must 
include a dynamic nature of a user interface, for example, adapting the labels 
and textual information in a user-defined language. Apart from the regional 
differences, there might even be differences between experts and nonexperts, 
young and old users, even visually impaired or physically disabled people 
should be taken into account during the design phase [89]. Since a user 
interface is interactive, it reacts with feedback to actions. This also holds for a 
progress bar that shows, as the name says, the progress of a process that runs 
in the background telling users how long they should be waiting for a result. 
Such feedback should also be given for buttons, for example, indicating a 
reaction by showing a different color of the button or showing it as “pressed”. 
Longer dialogues should be split into dialogue groups to create some kind of 
confidence after the completion of each dialogue group. 

Even if we integrated any kind of feature into a user interface we should 
avoid impossible actions by graying them out in the menu already. This 
strategy leads to the positive effect that users are not able to make errors that 
easily. The user interface reduces the chance to allow errors by removing 
impossible actions. Related to error prevention is the guidance to certain 
features by useful hints. Just in case an action was wrongly done, there should 
be an option to undo this action [258]. In any case, the users should keep 
the control over the user interface, however in some situations it is good if 
the machine takes over and at least suggests some useful next steps [171]. 
This could be more important for nonexperts than for experts. Finally, the 
number of things to be remembered should be reduced due to our bad short-
term memory [245]. We have a very limited capacity to store and process 
information, also in the field of visualization in which we can see the objects 
visually in front of our eyes. All of the aforementioned rules are useful for UI 
design, but they are dependent on the application scenario as well as the dis-
play space differing between mobile phones, laptops, and powerwalls [210]. 
Moreover, if web-based applications are in focus, keep in mind that the users 
can vary a lot, and they might have various experience levels, requirements, 
and demands. 

Exercises 

• Exercise 2.4.3.1: In a user interface we oftentimes find so-called 
progress bars to show us how long we must wait until a process is 
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completed. Describe typical challenges when including a progress bar 
in a user interface. 

• Exercise 2.4.3.2: What are additional challenges when sharing a user 
interface online, that is, making it accessible to all people in the world? 

2.4.4 Creating a graphical user interface 

A graphical user interface is something like the playground for any visualiza-
tion or visual analytics tool, but also a dashboard "lives" in there. This means 
the playground builds something like the limited environment in which we 
can find functions, tools, and algorithms to explore data. To keep the data 
exploration tool running in a reliable way, the components have to be chosen 
carefully as well as their layout [217]. The designer has to come up with a 
list of features that are absolutely necessary to solve the tasks at hand and 
places them somewhere in the user interface. Moreover, such features, in 
the form of interface components and visualizations, have to be linked in 
a clever way, by interaction techniques that the users can apply depending on 
their tasks-of-interest. Although this sounds like a simple idea it can become 
quite challenging, in particular, if a dashboard contains various features that 
have to be placed into the limited display region in a meaningful and user-
friendly way. Before starting the implementation phase we should be able to 
provide some kind of sketch or mockup of the user interface; however, we 
can still make adaptations during the implementation phase. In most cases, 
the originally designed user interface will not be the one that the users finally 
see to explore their data. We typically learn during the design process [13] 
how to improve it but we might get even more hints to improve it when real 
users are working with it. 

What we are going to do is creating some kind of prototype [77, 101] 
of the user interface, in the best case, also including some functionalities. 
The prototype is something like a template, to allow producing the tool based 
on a certain visual agreement. This step is even more necessary in cases in 
which the designers and the software developers are two different groups of 
people who more or less work independently. The coders have to know what 
to code to achieve the desired result. Each prototype is something like an 
interactive mockup that can have any degree or level of fidelity [77], although 
a mockup is sometimes not regarded as a real prototype. No matter how 
complex a prototype will be, the goal is always to explore issues like used 
material, costs, developers involved, time to create the tool, or in which way 
the tool will be developed, with which components and which functionalities. 
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By creating a prototype, we get a better understanding of the final product 
and which modifications must be made, in any stage during the development 
phase to keep the tool in the desired form. Also aspects like consistency 
and structuring are required during the development phase. Moreover, it 
might be of particular interest to think about which output device or display 
(see Section 2.5.3) the user interface will be shown on and which technical 
functionalities are possible, for example, from the perspective of interactions, 
we might consider mouse, keyboard, voice, gesture, or gaze interactions, just 
to mention a few (see Section 2.5.2). 

A prototype can be hand-drawn, or it can be created by means of a 
software. If we draw a prototype (or mockup, sketch) by hand, we have a 
higher degree of flexibility than if we used an external software for which we 
have to understand the useful features first. Drawing by hand is something 
that we already learn in the first years of our lives, hence we might feel more 
comfortable with that. The fidelity [77] describes how detailed a prototype 
is, for example, is it just a static picture or is it already dynamic, and we 
can interact with it to some degree. The fidelity gives an impression of how 
far we are away from the final product [96]. With a prototype, it is easier to 
imagine the final product than when reading pages of text describing all the 
components, features, and functionalities. By showing a prototype it is also 
easier for possible customers to imagine how the final product will look like 
and if they are confident with the design developed so far; hence, it accelerates 
the decision making of the customers. A prototype is something like a visual 
language that both the designers and the customers understand, to come to 
a common agreement before starting the development phase. Actually, there 
are several ways to create a form of a prototype, depending on the fidelity, 
that is, how far we can get to the final product. Those could be described as a 
sketch or hand-drawing, a wireframe, a mockup, a real prototype with lots of 
functions, and after that, we reach the final software with all of its functions 
and interactions. 

There is a list of design tools and software to support the designers 
when creating user interfaces [16]. Those tools range from classical graphic 
drawing programs for 2D and 3D graphics to more prototype-like soft-
ware systems full of features. Some of the tools are Justinmind, Mockplus, 
Adobe Photoshop, Sketch, Adobe XD, Figma, UXPin, InVision, Omnigraffle, 
Axure, Lucidchart, Proto.io, Marvel, Microsoft Visio, Miro Moqups, AFFIN-
ITY Designer, Adobe Illustator, Inkscape, Xara Designer Pro X, MockFlow, 
Gravit Designer, Fireworks, or Cinema 4D, just to mention a few from a really 
long list. 
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Exercises 

• Exercise 2.4.4.1: Describe and discuss the benefits and drawbacks of 
designing a user interface by hand, including visualization techniques. 

• Exercise 2.4.4.2: Draw a user interface for visually depicting social 
networks consisting of people who are related to some extent. 

2.5 Interaction 

Without interaction a visualization would just be a static picture that can, 
in its static form, be powerful as well but awaking it to life by allowing 
interactions [258] provides many more opportunities to dig deeper into 
the visualized data, to navigate in it, to modify views, to filter the data, 
and to inspect the data from several, even linked, perspectives [200, 222]. 
Interactions do not only depend on the used visualization techniques, also 
on the displays and the experience levels of the users, also on the fact if 
the users might suffer from visual, perceptual, or physical disabilities. For 
example, interacting on a small-scale display when using a smartphone is 
much different than interacting on a medium-scale computer monitor while a 
large-scale powerwall display [210] even allows walking around during inter-
actions. There is no best display for interactions, each of them has its benefits 
and drawbacks and requires suitable technologies to make the implemented 
interaction techniques run smoothly, for the task at hand. Not all interaction 
modalities like gaze, touch, mouse, keyboard, gestures, and the like, can be 
applied to any kind of display, for example, on a small-scale smartphone 
display it is more likely to interact by touch than by using a computer mouse. 
Moreover, on a large-scale powerwall display, it is beneficial to allow gesture, 
gaze, or body motion interactions than relying on touching the powerwall 
with one’s fingers. Touch means standing very close to the display which, on 
the other hand, would mean walking around a lot in front of the powerwall, 
with a high chance to miss important details due to a lack of overview. 

Even more advanced technologies like virtual, augmented, or mixed 
reality can bring new challenges for interaction techniques. In particular, the 
field of immersive analytics [173] demands for a combination of interaction 
modalities, also requiring to be applicable on many linked displays, maybe 
with various users in front of those displays [80], with the goal to visually and 
algorithmically allow explorations and analyses of data from a multitude of 
application domains. Not only the ingredients directly related to interaction 
like the displays, modalities, the users, or the linking of the user interface 
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components are crucial ingredients, also the data processing and transforma-
tion, running in the background build a huge and crucial part of a visualization 
tool. If the data structures and algorithms are not properly chosen and imple-
mented, interactions cannot run smoothly and quickly, hence the interactive 
responsiveness would suffer from the badly designed algorithmic approaches 
when it comes to data handling like storing, accessing, and manipulating it, 
either offline or online as a real-time data visualization. We argue that creating 
a visualization tool or a dashboard for data exploration and data analysis 
is some kind of interdisciplinary field that requires expert knowledge in 
many related disciplines like visualization, interaction, user interface design, 
perception, but also in data structures and algorithms, programming, software 
engineering, and many more. Making design mistakes in any of such related 
disciplines can cause performance issues that might make a visualization tool 
unusable. 

In this section we describe major interaction categories that we can find 
in nearly any data visualization tool (Section 2.5.1). These interactions can be 
combined in various ways, typically depending on the user tasks. Moreover, 
Section 2.5.2 illustrates which kind of modalities exist and in which scenario 
they might be the best options to integrate with a visualization tool. The 
most important ones might be given by gaze, touch, mouse, keyboard, or 
gesture. Also the display on which a visualization tool should be shown 
plays a crucial role (Section 2.5.3), not only for the visualizations alone 
but also for the interaction techniques and interaction modalities. Finally, 
data can be explored best if it is shown from several perspectives, bringing 
multiple coordinated views into play. Those are described in more detail in 
Section 2.5.4. 

2.5.1 Interaction categories 

Each individual interaction falls into a specific interaction category that 
describes the way how we interact, not on which display and with which 
interaction modality. For example, changing a visual variable in a visual-
ization, like the color from a blue-to-red color scale to a topographic one, 
could be considered another visual encoding, hence it is showing something 
new about the data. This means that all changes in color scales, but even 
more, all changes of the visual encoding fall into this specific interaction 
category. Following this idea, we might come up with at least seven different 
interaction categories [258] that can be described as selecting, exploring, 
reconfiguring, encoding, abstracting, filtering, and connecting. Moreover, an 
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eighth interaction category might be useful to include all changes to the 
exploration process itself, not directly to the visualization, which takes into 
account interactions like undo or redo, those that are typically more high-
level interactions being applicable to sequences of interactions. The history 
of interactions also plays a role here, for example, to allow jumping back 
to a certain point during the exploration process, allowing to step back to 
any kind of former visualization tool configuration. This eighth category 
of interactions is typically applicable from the user interface directly and 
in most situations, shortcuts can be used to faster apply them, in case the 
users became more and more familiar with a visualization technique or user 
interface, that is, they changed their roles from nonexperts to experts in 
some way. 

Figure 2.23 On a visualization depicting value changes over time, we can select a certain 
point, for example, to get detail information or to further use the selected data point in the 
exploration process. 

The seven standard interaction categories include selecting visual ele-
ments (see Figure 2.23) as one of the most basic interaction techniques. 
Without selecting an element, we are typically not able to apply further 
interactions; hence, interactions build something like an interaction chain or 
interaction sequence. In cases, we even allow the undo of interactions we do 
not get a sequence of interactions anymore but something that looks more like 
an interaction hierarchy. Actually, not the interactions create a hierarchy, but 
more the states of the visualization tool that we are going to modify during 
the interaction process. Even more, allowing to reach the same state again 
after having applied many of those interactions, we get a graph or network 
of tool states that describes which states are reachable by which interactions 
that model the edges of this graph/network [41]. Exploring means to look 
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around, that is, to change the view, for example, when scrolling or panning in 
a visualization that does not fit on the display. This interaction category helps 
when an overview cannot be provided in one view. Reconfiguring describes 
the effect of changing a visualization to make it usable for a certain task 
that could not be solved without the change. For example, adjusting visual 
elements to a common scale to make them comparable would be a useful 
feature, maybe using a baseline adjustment technique. Encoding actually 
allows to modify the visual variables to get a different perspective on the 
data while abstracting means to show more or less detail, like in zooming 
techniques. In cases in which only parts of the data are shown, maybe only 
those parts that follow a certain user-defined condition, we talk about filtering. 
Finally, connecting describes the way we link views in a visualization tool, 
with the goal to inspect the data from several perspectives at the same time, 
that is, simultaneously, for example, in a multiple coordinated view [200] 
described in Section 2.5.4. 

Exercises 

• Exercise 2.5.1.1: How would you design an interaction technique for 
selecting one point, several points, connected regions, or points in a 
previously selected region? 

• Exercise 2.5.1.2: How would you design an interaction technique to 
select a pixel, a group of pixels, a line, or a group of (possibly 
intersecting) lines? 

2.5.2 Interaction modalities 

When interacting with a visualization tool, we need some kind of input chan-
nel as well as an output channel, both are required to allow a dialogue between 
a system and its users. As an example we might consider mouse clicks as 
the inputs and the visible impact of these clicks on a computer monitor, that 
is, this input–output build a modality when interacting on a computer mon-
itor in a mouse-based user interface. Human–computer interaction defines a 
modality as a class of an individual channel of sensory input/output between 
a machine and human users [12] while there exists a difference between 
allowing only one modality (unimodal) or several of them (multimodal). 
There is a list of modalities ranging from keyboard, joystick, mouse, pointing 
device, touchscreen, speech recognition system, motion- or gesture-based 
system, or gaze-based ones, just to mention a few very popular modalities. 
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Unimodal modalities might be easier to apply and easier to implement in 
a visualization system, but can also become a limitation for certain tasks. 
For example, only using gaze-based interaction can cause problems due to 
the so-called Midas Touch problem [239] which is quite popular in the field 
of eye tracking [44, 86, 123]. Hence, further modalities are integrated like 
speech recognition, meaning if a person is looking around in a user interface 
nothing is activated by gaze only, but speaking out a certain kind of command, 
for example "press button" can start a specific interaction. This is somehow 
related to modern mobile phones on which speech recognition is implemented 
in the form of deep learning approaches, for example awakening a mobile 
phone to life by just saying "Hey Siri." Such a wake word [103] concept opens 
another way of interacting with such a system, although it slept before in a 
stand-by mode and only allowed the more traditional interaction modalities 
with the phone. 

Figure 2.24 Interacting by using a computer mouse is one of the standard interaction 
modalities for visualization tools displayed on a classical computer monitor. 

In a visualization tool we typically find the classical interaction modalities 
like a computer mouse (see Figure 2.24) and a keyboard, but also touch is 
possible depending on the fact that a touchscreen is used. However, touch 
can be problematic due to the humans’ fingers that might cover certain tiny 
visual objects of pixel size and hence, the underlying information cannot 
be explored anymore [189]. A mouse cursor is much better in this scenario 
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since it does not cover that much information than a human finger would 
do. Negatively, we can identify the problem of having a mouse not directly 
connected to the visualization system, that is, we have to understand the 
properties of a mouse on the desk first before we can apply it to the computer 
monitor. Touching with the finger is much more natural but it also brings new 
challenges into play, apart from the covering effect it creates some indirect 
body-to-body touch effect between human users, for example in cases in 
which many people use the same service like a ticket machine placed in 
a train station. This might cause negative issues, in particular during the 
COVID-19 pandemic, trying to avoid as many human-to-human contacts 
as possible [240]. Sure, we cannot ask people to bring their own computer 
mouse but we could integrate other interaction modalities like gaze-based 
interaction or speech recognition, however speech might be a problem in a 
noisy background like in the scenario of a ticket machine in a crowded train 
station and gaze causes problems related to the Midas touch problem and 
technological issues related to fixation accuracy. 

Exercises 

• Exercise 2.5.2.1: What are typical scenarios in a visualization tool that 
might be good candidates for using speech recognition as an interaction 
modality? 

• Exercise 2.5.2.2: Imagine you have a visualization tool in which gaze-
based interaction is integrated. What could be a challenging problem 
here? Hint: Midas Touch problem. 

2.5.3 Displays 

Each visualization tool must be presented somewhere, meaning a certain kind 
of display [165] is required to let the users see where they can apply an 
interaction for example and which impact such an interaction will have on the 
diagrams but also on the visual components of the user interface. There are 
various ways to display the visualizations that have been created, typically 
depending on the tasks to be solved and which visualizations are finally 
integrated into a visualization tool. For example, if many users are required 
we should create a web-based visualization tool that runs on a mobile phone, 
possibly being able to recruit many people since many of us own a mobile 
phone, even allowing crowd-sourcing user experiments [197]. However, the 
display itself is much smaller than the one of a standard computer, hence 
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Figure 2.25 Showing a geographic map on a large-scale display while the observer is 
equipped with an eye tracking device for either exploring where he is paying visual attention 
or for using the eye tracker as gaze-assisted interaction (figure provided by Lars Lischke). 

the visualization tool itself must be designed in a different way than the one 
designed for the standard computer monitor. If many users have to explore 
a dataset visually at the same time, it might be a good idea to use a large-
scale display [166], that is, a powerwall [210], allowing many people to 
collaboratively work on similar data analysis and visualization problems. 
A large display can also be useful for one observer, in cases in which an 
overview has to be given with many small integrated details (see Figure 2.25 
for a geographic map on a large-scale display). The biggest issue here might 
be to merge the different findings of all the collaborators to find a common 
result, maybe in form of visual patterns that graphically model data patterns. 
The display plays a crucial role during the design but also the implementation 
phase. Large-, medium, and small-scale displays can make a difference not 
only for the visual and interface design but even more for the interaction 
design. Not every interaction technique that is applicable on a computer 
monitor can be applied in the same way on a mobile phone or on a powerwall. 

Whether or not an interaction modality makes sense and is useful on a 
certain type of display depends on several aspects, also on the environment 
like noise in the background making speech more difficult to be applied, 
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but there are some scenarios in which it is clear that a certain setup is not 
meaningful, for example using a computer mouse on a powerwall display 
(see Table 2.1 for a general overview about meaningfulness). 

Table 2.1 Displays for which standard interaction modalities make sense or not: (++) very 
meaningful, (+) meaningful, (o) not clear, (-) not meaningful, and (–) not meaningful at all. 

Display types and interaction modalities 
Small-scale Medium-scale Large-scale 

Mobile phone Computer monitor Powerwall 
Mouse – ++ – 

Keyboard + ++ – 
Joystick – + -
Touch ++ + + 

Gesture - o ++ 
Speech + + ++ 
Gaze + + + 

Exercises 

• Exercise 2.5.3.1: Discuss the differences of the usefulness when integrat-
ing interaction modalities like touch, gaze, mouse, keyboard, joystick, or 
gesture into different types of displays like small-scale displays (mobile 
phones), medium-scale displays (computer monitors), and large-scale 
displays (powerwalls). 

• Exercise 2.5.3.2: Which kinds of displays are most useful for visualiza-
tion tools, that is, dashboards? Discuss benefits and drawbacks. 

2.5.4 Multiple coordinated views 

A visualization tool rarely contains just one view on the data, it merely con-
sists of many perspectives with different diagram types based on a multitude 
of parameters. In cases in which multiple of those views are integrated and in 
which the views are connected while the users are interacting we denote them 
as multiple coordinated views [200]. Depending on how large our display is 
we can integrate more or less views on the data being connected in the back-
ground in efficient data structures making a data handling possible to provide 
a fluent interactively responsive user interface. One specific interaction con-
cept denoted by brushing and linking [243] is typically included, allowing to 
select a certain number of visual elements in one view that are then visually 
highlighted in all of the other views in which they are represented as well. 
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Brushing can be regarded as the operation of selecting one or a number 
of visual elements, maybe selected in a region, while linking describes the 
effect of seeing them in all of the other views in which they are existent, 
hence the multiple views are coordinated in some way, also depending on the 
users and the fact how they use the coordination. Multiple coordinated views 
(see Figure 2.26) can be found in user interfaces in medium- or large-scale 
displays [158], but less in small-scale displays like mobile phones due to the 
limited display sizes. By using multiple perspectives we hope to show visual 
patterns in different ways making them pop out in some views and in some 
others they might be invisible. Hence, the chance of seeing the visual patterns 
gets higher when providing multiple views instead of just one. 

Figure 2.26 Several perspectives on a COVID-19 dataset in a multiple coordinated view 
(figure provided by Sarah Clavadetscher). 

A big challenge for multiple coordinated views comes from the fact that 
the data handling has to keep all of the views up-to-date, that is, a certain 
control mechanism has to run in the background that updates all of the views 
when just one gets changed. Such a model-view-controller architecture can 
be quite useful in such situations. The controller keeps track of the changes 
and sends updates to keep the visualization tool consistent in all of the 
perspectives and views. This can also include user interface components not 
just the views in the visualization tool. For example, updating a visualization 
could also cause to modify or update the visual appearance of buttons or 
sliders, in cases in which the range of values got changed based on a user 
interaction it would make sense to also avoid that the users can select the 
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wrong value ranges in cases in which the range sliders would not have been 
updated. Views should not be changed abruptly since this would destroy the 
users’ mental maps [150], hence in case changes have to be made to one or 
several views, those should be done smoothly, for example including some 
kind of smooth animation [242] to allow users keeping track of the changes, 
a typical scenario in which arrangements of visual elements have to be made, 
maybe caused by a new ordering or alignment strategy. 

Exercises 

• Exercise 2.5.4.1: Which role plays the data handling running in the 
background when interacting in multiple coordinated views? 

• Exercise 2.5.4.2: How many views can be integrated in a visualization 
tool at the same time? Discuss. 



3 
Python, Dash, Plotly, and More 

There are various ways to implement a visualization tool, even in the form of 
an interactive dashboard [255]. The focus of this book is on the program-
ming language Python [160], combined with Dash and Plotly which will 
be described in detail in the following sections. Python is a popular high-
level programming language with a specific focus on code readability by 
making use of mandatory indentation rules. It supports a certain number of 
programming paradigms, typically the functional and object-oriented ones. 
One of the great benefits of designing and implementing visualization tools 
as dashboards in Python is the fact that the created tool can be made publicly 
available in an easy way by deploying it on a server, hence making it 
accessible for a number of people all over the world [201]. This again requires 
a user-friendly design solution that takes into account the various differences 
in spoken and written languages, cultures, signage, and the like, which is 
also reflected in the eight golden rules for designing user interfaces (see 
Section 2.4.3) [217]. Moreover, other design rules, focusing on the visual 
design (see Section 2.4.1) [232], are also crucial ingredients when building 
such web-based solutions for data visualization tools. 

Including the important aspects from the field of visualization, visual 
analytics, interaction, algorithmics, and the many related disciplines of this 
interdisciplinary topic [144], we are now prepared to learn about the concepts 
required to actually start building a tool [172], once the design phase has 
been completed. This does not mean that the design phase is really over. 
In many scenarios, we still learn about the usefulness of a certain feature 
when it is really applied in the running tool or even when we think about 
it again in a discussion, and hence, there should always be an option to 
redesign what we have created before (at least partially), until we and our end 
users are confident with the results [214]. This actually brings into play user 
evaluation [152], that is, the users can either be on board during the design 
phase and even implementation phase or they can test the final product, that is, 
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after it has been completed, based on the design criteria and requirements that 
we got so far. This again means that starting with an original sketch, mockup, 
or prototype (Section 2.4.4), we are able to modify this prototype based on 
user interventions until all involved parties are confident with the result. To 
reach this goal of a running tool, we actually provide the major ingredients in 
this chapter before we discuss code examples in the programming language 
Python in its own chapter (see Chapter 4). 

First of all, we introduce the necessary technologies, programming lan-
guages, and libraries (Section 3.1) like Python, Dash, and Plotly, as well as 
further ingredients and concepts, before we move to important installations 
and options to actually get started to efficiently and effectively develop and 
implement what we have designed (Section 3.2). Here, we look into differ-
ent modes like the interactive one, including the Jupyter Notebook mode, 
and the integrated development environment (IDE) mode. The interplay 
between all of the formerly described implementation concepts is illustrated 
in Section 3.3 with the subconcepts of data reading and parsing, data trans-
formation, Dash core components, Dash HTML components, cascading style 
sheets (CSS), Plotly, and callbacks that more or less build the interface 
between the visualization techniques and the user interface, that is, the 
dashboard. The web-based solution is described in Section 3.4, with several 
options to get it running online. 

3.1 General Background Information 

There are several ways to create a visualization tool, full of algorithmic 
functions and interactive graphics, with the human users-in-the-loop. In this 
book, we mostly focus on the programming language Python, Dash, and 
Plotly to describe one possible way to build such tools. Python is chosen 
since it is taught in many university courses and hence, students are already 
familiar with the most important programming constructs [52]. Plotly as a 
way to create interactive diagrams, is based on Python code and can be 
learned easily, in particular, if the suitable visualization techniques are already 
introduced and described earlier as in this book (see Section 2.3). The same 
holds for the interaction techniques [258] that are integrated to some extent 
into the corresponding Plotly diagrams. Interaction techniques have been 
described in this book as well (see Section 2.5.1). Finally, Dash is a way 
to create dashboards, consisting of various interactive diagrams, algorithmic 
concepts, and user interface components, with the goal to build tools for 
data analysis and visualization, that is, visual analytics tools as well. Dash is 
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some kind of framework focusing on the programming languages Python, R, 
and Julia. 

In this section, we first introduce general aspects of the programming 
language Python (Section 3.1.1). The more programming-specific code con-
structs that are required to create our dashboards, given in Chapter 5, will 
be explained in a tutorial in more detail in Chapter 4. We will also focus 
on the framework Dash in Section 3.1.2 before we describe and illustrate 
some Plotly diagrams in Section 3.1.3. Finally, we will discuss further not 
already described ingredients that might be interesting to create dashboards 
(Section 3.1.4). 

3.1.1 Python 

The programming language Python already exists for quite a while, and 
it was developed in the late 80s by Guido van Rossum while 1991 it got 
released as version 0.9.0 [236]. Python 2.0 and 3.0 followed in the years 
2000 and 2008, respectively, including further improvements and extensions. 
During the writing of this book, Python 3.10.4 and 3.9.12 were available. 
Python is considered a high-level programming language that can be applied 
in various application domains, with data science [223] as one of the major 
ones in these days. Popular features of the language are the use of explicit 
indentation to make the code more readable and maintainable. For example, 
Python also avoids many opening and closing parentheses due to its indented 
code structure. The type system of Python is described as being dynamic, 
meaning data types do not have to be explicitly specified as in other pro-
gramming languages like Java or Pascal. Moreover, several programming 
paradigms are integrated into Python with functional and object-oriented 
styles, as being the most obvious ones. Also, the procedural, aspect-oriented, 
or logic programming paradigms can be found here and there. Libraries 
can be imported to extend the degree of functionality a program can under-
stand, ranging from classical algorithmic data processing libraries to graphics 
libraries and many more. Given the fact that Python is frequently used 
from data scientists, it is typically considered as one of the most well-
known languages with a large programmer community, eager to help when 
programming issues occur that cannot be solved by one’s own knowledge 
and experience. However, Python code is typically quite clear and reduced 
to a minimum (see Listing 3.1 for an example consisting of a few lines of 
Python code). 
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1 c o l o r s  =  [ " red "  , " blue "  , " green "  , " ye l low " ] 
2 ca r s  =  [ "BMW" , "VW" , "Mercedes" ] 
3 

4 f o r  x in  c o l o r s  :  
5 f o r  y in  ca r s :  
6 pr in t (x ,  y )  

Listing 3.1 A code example for a running Python program printing 12 pairs of colors and 
car brands in code line 6. 

Exercises 

• Exercise 3.1.1.1: Find other programming languages in which a dash-
board or a visualization tool can be implemented. What are typical 
libraries required to create a visualization tool? 

• Exercise 3.1.1.2: What are typical negative issues when using Python for 
creating a visualization tool? 

3.1.2 Dash 

Dash does not cost anything, is available as open source, and is created 
by the company Plotly as a framework to build web applications, typically 
with a focus on data analysis, visualization, and visual analytics tools. The 
major programming language which is supported in Dash is Python but also 
other ones like R or Julia are imaginable. Dash is actually created on React, 
which describes a well-known web framework in the programming language 
JavaScript. Moreover, it is also based on Flask, which is a well-known web 
server focused on Python. Before working with Dash, we have to make some 
installations, for example, when using conda (see Listings 3.2 and 3.3). In 
cases, Anaconda is not already installed, we refer to Section 3.2. 

1 pip  i n s t a l l  dash  

Listing 3.2 One way to install Dash on your computer. 

1 conda  i n s t a l l  dash  

Listing 3.3 Another way to install Dash is by using conda. Make sure that conda is already 
installed. 

A very simple code example will generate our first application (line 4 in 
Listing 3.4) after having imported Dash and the Dash HTML components 
that are required in the layout of our webpage, given by app.layout in line 6. 
At the moment, this just contains a headline in H6 HTML size saying "Hello 



3.1 General Background Information 77 

World in Dash" but in the future, this is the place in which we can integrate 
many more HTML features, just like in the case when structuring a webpage 
like our own homepage. Finally, in line 9 of Listing 3.4, we will start the 
server. 

1 import  dash  
2 from  dash  import  html 
3 

4 app  =  dash . Dash (__name__)  
5 

6 app .  l ayout  =  html .H6( ch i l d r en=" He l lo  World  in  Dash" ) 
7 

8 i f  __name__ == "__main__" : 
9 app .  run_server ( debug=True ) 

Listing 3.4 An application showing how to create a simple layout and to start the server with 
further required ingredients such as needed imports at the beginning. 

We could even compile or execute this program, for example, by using 
a Jupyter Notebook [184], which hopefully results in a message returning 
a URL for using in a web browser to see the results of our program. 
This message tells us that we started a Flask server on our own com-
puter, that is, locally not remotely, which is typically run under the URL 
http://127.0.0.1:8050. You can start this program only on your own computer 
since this URL belongs to the so-called localhost. We have created our first 
webpage, but we have to admit that it is still too early to speak of any success 
in the sense of having implemented a dashboard. However, with this simple 
example, we are already prepared for much more complex dashboards. 

Exercises 

• Exercise 3.1.2.1: Modify the code example in Listing 3.4 to show a much 
larger text saying, "Hello, now the headline is bigger." 

• Exercise 3.1.2.2: Why is HTML alone not the best choice for creating a 
user-friendly and aesthetically appealing dashboard? 

3.1.3 Plotly and Plotly Express 

Also, Plotly is available as open source and describes a library usable in 
the programming language Python. Based on a lot of experience in visu-
alization and programming courses at several universities we can say that 
Plotly is easy to understand and makes it simple to get started in dashboard 
programming [42, 43, 52] since the newcomers in the field do not have 

http://www.127.0.0.1:8050
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to learn to create visualizations pixel-by-pixel but Plotly already comes 
with fully fledged diagrams equipped with the most important interaction 
techniques [258]. This saves a lot of time in a visualization course [45] that 
would otherwise be wasted when trying to build diagrams or charts from 
scratch. Plotly.express, on the other hand, describes some kind of wrapper for 
Plotly to make it even simpler to use and to equip it with even more features. 
Plotly.express also allows to create a visualization in one or a few lines of 
Python code, for the same result, we might have needed many more lines of 
code in other programming languages like Java or C++. We might say that 
with Plotly.express the writing of the code is simpler due to its easier syntax 
in use, meaning instead of coding a few lines one after the other, typically just 
one line of code is required with the desired parameters given in parentheses 
(see Listing 3.5 for an example of code with which we can create a simple bar 
chart in Plotly.express, the corresponding diagram is shown in Figure 3.1). 
After the installation of Plotly Express (or Plotly.express) we only need to 
import it in our Python code (see line 1 in Listing 3.5) to get started for 
creating interactive visualizations in Python. 

1 import  p l o t l y  .  expre s s  as  px  
2 

3 df  =  px . data .  t i p s ( )  
4 

5 f i g  =  px . bar ( df ,  x="smoker" , y=" t o t a l_b i l l "  ,  c o l o r=" t i p " ) 
6 f i g  . show ( )  

Listing 3.5 A simple example of code for creating a bar chart in Plotly from the tips dataset 
with extra categories like "smoker" versus "nonsmoker" and color coding based on tips. 

Plotly Express comes with a lot of benefits but on the negative side 
it also has to deal with problematic issues. On the beneficial side we can 
mention that each plot can be built with just one or a few lines of code, 
just parameters, attributes, and flags have to be adjusted to obtain the desired 
functionality and the visual variables of interest like a specific color coding, 
certain shapes, or sizes, and the like (see Section 2.2.1). Moreover, the 
generated plots are already equipped with interaction techniques ranging 
from selection, zoom and filter, or details-on-demand (see Section 2.5.1). 
Even animated diagrams [84, 233] can be created for a certain variable in use, 
for example, a time attribute or any other attribute that is given with different 
values or value categories. The Plotly Express world would be wonderful 
if it had not some major flaws that might make someone think about using 
other options for creating interactive graphics in Python or even in a totally 
different programming language. One big negative issue comes from the fact 
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Figure 3.1 The result when executing the code in Listing 3.5. A color coded bar chart 
distinguishing between two categories smokers and nonsmokers as well as different tips for 
total bills. 

that Plotly Express does not support all possible features that one desires. 
Although color coding works, for example, it can be a disaster if someone 
wants to assign exactly the same colors to pre-defined categories each time 
a plot is created again and again. Also for the zooming feature there is no 
way to solve the focus-and-context or overview-and-detail problems [195] as 
other advanced visualizations typically do. Plotly Express is mostly used by 
data scientists who need a quick visual support to their data science problems 
at hand, hence it is more focused on exploratory data analysis, missing many 
features that visualization or visual analytics experts would require for their 
data analyses. 

Exercises 

• Exercise 3.1.3.1: Modify the code in Listing 3.5 to show male versus 
female instead of smokers versus nonsmokers. The attribute for this is 
called "sex" instead of "smoker." Visually explore the created diagram. 

• Exercise 3.1.3.2: Modify the code in Listing 3.5 to show the tips on the 
y-axis and the total bill in the color coding of the diagram. Compare the 
new plot with the one in Figure 3.1. 
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(a) (b) 

(c) (d) 
Figure 3.2 Several graphics libraries for creating diagrams in Python: (a) Plotly Express. 
(b) Matplotlib. (c) Seaborn. (d) Bokeh. 

3.1.4 Further ingredients and concepts 

Apart from Plotly Express we can find more graphics libraries in 
Python [120], all of them having advantages and disadvantages (see Fig-
ure 3.2 for a comparison of the same diagram type plotted by means of 
several graphics libraries, Figure 3.3 shows a visual result for a geo-related 
library). Some of the popular ones are matplotlib, Seaborn, ggplot, geoplotlib, 
or Bokeh. Actually, based on feedback from more than 1000 students in 
visualization courses [52], we can say that none of the aforementioned 
libraries is really difficult to use, given the fact that the users already have 
some prior expertise in programming (they do not have to be experts), in 
particular in Python. The only question that remains is which library is 
the best one for which purpose, a question that is quite difficult to answer. 
However, we can at least provide some kind of discussion on a comparable 
basis. Some of the aforementioned libraries already exist for quite some years 
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Figure 3.3 Using Geoplotlib [79] for geo-related visualizations. 

while Plotly Express came on the market in 2019. Matplotlib is one of the 
most used visualization libraries in Python, not only because it is quite old, 
compared to the others but also because it supports interactions in a multitude 
of simple diagrams like histograms, scatterplots, pie charts, and many more 
(see Section 2.3). Seaborn actually makes use of the Python structures for 
handling data such as pandas and numpy. Moreover, it also supports simpler 
charts, for example for statistical approaches and results. ggplot is actually 
based on an R implementation of ggplot2 while ggplot is also beneficial for 
simple plots while at the same time allowing to integrate visual variables 
like color, size, shape, and so on, however, the interactions are quite limited. 
The specific application domain of geography is supported by geoplotlib that 
offers many ways to depict geographical data in maps. Bokeh is also popular, 
but its charts and plots are rendered by making use of HTML and JavaScript, 
making it a good choice when creating web-based visual solutions. 

Exercises 

• Exercise 3.1.4.1: Create a scatterplot with each of the visualization 
libraries. Which one do you think is the most aesthetically appealing 
one? 

• Exercise 3.1.4.2: Which of the diagrams from above allow interactions 
and which kinds of interaction categories [258] do they support? 



82 Python, Dash, Plotly, and More 

3.2 Installations and Options 

Before we can start, we should bring our working and programming envi-
ronment to a suitable state to implement the designed dashboard [145]. For 
this reason, it is important to take into account all possible ingredients to 
setup the programming tools in the right order. Python can be run in several 
ways, for example in an interactive mode, in a Jupyter Notebook mode, 
that is, interpreter-like mode, or in an integrated development environment 
(IDE) such as PyCharm or Spyder. Depending on which operating system 
we are using, like Windows, Linux, or MacOS, it might make a differ-
ence to get Python running on our computer. Anyhow, we recommend to 
install Anaconda (https://docs.anaconda.com/anaconda/install//) first while 
we might verify our installation afterward (https://docs.anaconda.com/ana-
conda/install/verify-install/). Table 3.1 illustrates for each of the popular 
operating systems how to find and start Anaconda. Once Anaconda is started 
we can find useful tools to implement and debug Python code. 

Table 3.1 Finding Anaconda to get started in the desired operating system. 
Anaconda in a specific operating system 

Operating system How to find Anaconda? 
Windows Start ⇒ Anaconda Navigator 
Linux Terminal ⇒ anaconda-navigator 
MacOS Launchpad ⇒ Anaconda Navigator 

In this section, we will focus on three modes in which we can start 
implementing Python programs. Not all of them are suitable for developing 
a fully fledged dashboard but depending on the experience level of the 
programmer and the purpose of programming, one or the other might be 
beneficial. Section 3.2.1 illustrates what we call the interactive mode by 
directly working in a powershell or terminal, only offering a limited, but 
working, environment. In Section 3.2.2, we discuss an interpreter-like mode, 
focusing on Jupyter Notebook, an environment that is already quite flexible 
to implement Python programs but that only allows smaller pieces of code. 
We mention it in its own section in the book since we consider it as one 
of the most popular environments for data scientists. Jupyter Notebook is 
also considered an IDE, but we think it has less options than other IDEs like 
PyCharm or Spyder for example. In Section 3.2.3, we talk about many more 
integrated development environments (IDEs) [135] that are powerful tools 
for implementing Python code, even larger programs consisting of various 
files and functions which might not be that handy in Jupyter Notebook. Also, 

https://www.docs.anaconda.com
https://www.docs.anaconda.com
https://www.docs.anaconda.com
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GitHub (Section 3.2.4) can be of great help, in cases, some programmers 
work together on the same problem, in a so-called collaborative manner. 

3.2.1 Interactive mode 

It is possible to create runnable Python programs without the installation 
of advanced integrated development environments, just by using a terminal 
or a powershell (see Figure 3.4). Typing in source code line by line and 
finally let run this code will yield a result, in cases, the code is syntactically 
correct. Modifying this piece of code is a daunting task, in particular, if the 
code gets longer and longer with more and more functionality, even spread 
over several classes in object-oriented programming [176]. Moreover, it is 
impossible to easily store the implemented code, for example, in a text file 
to further develop it later on or to send it to someone else, for example, to 
share it with others in a collaborative source code development like it is done 
in larger software projects [11]. The terminal is something like a command-
line interface but to accelerate our everyday programming work, we wish 
to have something that comes close to a graphical user interface [226] for 
solving typical programming tasks, focusing on mental map preservation and 
a reduction of cognitive efforts, aspects that are hard to take into account 
in command-line interfaces. Although a command-line powershell interface 
allows to write and run code in an interactive mode, that is, the code will 
be evaluated immediately on-the-fly after pressing return, for example, just 
like an interpreter does, all of the code will be lost each time we close or 
exit the powershell. This is an unsatisfactory behavior. Storing the code in a 
file and calling this file in a powershell is also possible, but that requires to 
store the file each time and to evaluate it each time. A better option would 
be to directly let the code evaluate while at the same time keeping the code 
content in a data file, a strategy that is shown in a Jupyter Notebook mode 
in Section 3.2.2. 

Exercises 

• Exercise 3.2.1.1: Open a powershell or terminal and implement Python 
code to experiment with this option. Discuss the benefits and drawbacks 
of this option. 

• Exercise 3.2.1.2: Try to modify your code from Exercise 3.2.1.1 several 
times. What is the obvious problem here? 
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Figure 3.4 Programming in Python in a powershell is one way to create, compile, and run 
programs. Unfortunately, it comes with a list of negative issues. 

3.2.2 Jupyter Notebook mode 

Jupyter Notebook [184], also being an integrated development environment 
(IDE), can be used as a web-based tool for implementing and evaluating 
Python programs in an interactive style (see Figure 3.5 for the same exam-
ple Python code as in Figure 3.4). Writing code in a Jupyter Notebook is 
similar to creating documents, with the difference that the documents can be 
interpreted and the result is given in cases the code is syntactically correct. 
The user interface of a Jupyter Notebook consists of text field-like entries 
containing Python code followed by results in form of textual, numerical, and 
graphical outputs. One benefit compared to the traditional way of using the 
interactive mode in a powershell comes from the fact that the code is storable, 
typically in a file with a .ipynb file extension. Moreover, the code can be 
modified, extended, while it can be re-interpreted, text field by text field, just 
to keep all the variable values up-to-date. It is also possible to artificially 
"decorate" Python code in a Jupyter Notebook by integrating HTML-like 
texts, for example, for providing headlines to several code fragments. Since 
such a notebook is running in a web browser, it can even be translated in other 
document formats including HTML or pdf. However, a Jupyter Notebook is 
still missing a lot of functionality and features that we would typically expect 
from classical modern integrated development environments like PyCharm or 
Spyder. 
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Figure 3.5 The same code as in Figure 3.4 is illustrated here in a Jupyter Notebook. 

Exercises 

• Exercise 3.2.2.1: Start a Jupyter Notebook and extend the Python code 
from above by changing the range of the for-loop to be between 5 and 
25. Run the new code in the Jupyter Notebook. 

• Exercise 3.2.2.2: Store the code in the Jupyter Notebook in a file and 
find the file on your computer. Which file extension does it have? 

3.2.3 Integrated development environment (IDE) 

Figure 3.6 Several important aspects around source code and source code quality. 
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An integrated development environment (IDE) can be regarded as soft-
ware that helps programmers to implement code, in particular, in larger 
programs by providing various tools, that is, software like an interpreter or 
compiler, a debugger, an editor with syntax highlighting and code formatting, 
a variable tracker, a version control and the like, each of them focusing 
on a certain functionality during software development [82]. Hence, they 
provide more functionality in a so-called multiple coordinated view [200] 
user interface than the interactive or Jupyter Notebook mode can offer. There 
are various IDEs, but actually software developers are mostly focusing on a 
specific one and hardly change this one during their lives, unless there is a 
really good reason to do that [110]. In Python, there is a list of such IDEs 
consisting of an editor and functionality to create and debug code. The most 
important and useful ones might be PyCharm, Spyder, Visual Studio Code, 
Atom, Jupyter Notebook, LiClipse, Vim, GNU Emacs, Sublime Text, and 
Thonny, to mention a few. Most of them can be used in the popular operating 
systems, hence they work in Windows, Linux, and MacOS. Some of them 
have more, some others less functionality, but all of them can be regarded as 
integrated development environments to some degree, also Jupyter Notebook, 
although we have described it already in Section 3.2.2 separately. Working 
with an editor like Emacs or Notepad can also be an option, but most of 
the Python-based debugging functions would be missing, functions that IDEs 
typically offer. Jupyter Notebook is somehow located between an IDE and 
an editor due to the many missing but important IDE functions. The more 
experience a programmer gets, the more interesting such IDEs will get, 
making programming more efficient. Important functions focusing on code 
quality improvements might be listed as follows (see Figure 3.6): syntax 
highlighting, syntax matching, bracket match checking, variable explorer, 
error highlighting, indentation support, code completion, code clone detec-
tion, refactoring tools, profiler, file system and class browser, history log, 
code sharing, GitHub integration, and many more. 

Exercises 

• Exercise 3.2.3.1: Install the integrated development environments men-
tioned above, experiment with them, and create a list with benefits and 
drawbacks for each IDE. Which one is the preferred one, and why is it 
suitable for developing dashboards? 
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• Exercise 3.2.3.2: Implement a small Python program in each of the 
IDEs and include a bug or a wrong indentation in the code on purpose. 
Describe how the IDEs react on the bug and the indentation problem. 

3.2.4 GitHub 

Figure 3.7 Larger software systems are implemented by developers in a collaborative 
process. 

Software development is typically not an individual’s job, in an isolated 
environment, but today’s software systems are quite large, consisting of many 
files and classes, with a multitude of functions, too large that many developers 
and coders (see Figure 3.7) are required to solve the problems at hand in a 
collaborative manner [53]. GitHub is a good option to work together in larger 
projects [167] while also a version control is integrated to let the developers 
checkout the latest implementations to their workspace, to commit updates 
to the repository, and to set back the code to an earlier state, in cases this is 
needed. Also, further features apart from version control are useful during 
software development such as bug tracking, error databases, or change logs. 
The software projects in GitHub can be provided in an open source manner, 
letting the community taking part to some extent. GitHub already reached 
the sheer size of supporting nearly 100 million developers all around the 
globe since its development started already in 2007. GitHub also includes 
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primitive visualizations to visually explore the developer activity in some 
kind of graph representation [82], but the visual support is definitely one of 
the weaker points in this powerful tool. Since the dashboards we are designing 
and implementing in this book are rather small software projects, we will not 
make use of GitHub, we are just introducing GitHub as an option for many 
developers, in cases dashboards with a multitude of functions and interactive 
visualizations have to be developed by several developers. 

Exercises 

• Exercise 3.2.4.1: Create a new dashboard project by using GitHub. 
• Exercise 3.2.4.2: Invite some collaborators to your project who will help 

you with coding the dashboard. 

3.3 Interplay between Dash, Plotly, and Python 

Creating dashboards requires knowledge and experience in many subtopics, 
at least involving Dash, Plotly, and some programming in Python. One of the 
first steps is to get the data into the visualization tool, typically stored in one or 
several data files or in a database. The data alone is, in most of the scenarios, 
not usable in the given format or in the given order and structure, that is, it has 
to be transformed into suitable data formats, understandable by the tool, and a 
meaningful structure has to be computed to allow data patterns to be detected 
by means of powerful interactive visualization techniques [178, 258]. For 
the visualizations, there exist several graphics libraries (see Section 3.1.4), 
but the user interface [217] is as important as the visualizations themselves. 
The visualizations we are going to create in this book are mostly based on 
Plotly and the user interface focuses on Dash with its Dash HTML and Dash 
Core Components, visually improvable and adjustable by using the right CSS 
commands. The actual dialogue between the users and the visualization tool 
is built by so-called callbacks, standing for the interface between the user 
input in the user interface and the visual, tabular, and textual outputs in the 
user interface is given by visualization techniques, tables with textual and 
numerical information, and textual information itself like labels or details-
on-demand and the like (see Figure 3.8 for an illustration of the ingredients 
for creating a dashboard). 

This section is organized in some kind of ordered structure with dash-
board implementation playing a key role, starting with the data in use that 
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Figure 3.8 The major ingredients for implementing a dashboard. 

has to be read first since the data builds a certain core ingredient in each 
data visualization tool (Section 3.3.1). Transforming the data is important 
to bring it in the right data format but also in the right data structure to 
derive data patterns (Section 3.3.2). In Section 3.3.3, we describe the Dash 
core components, while in Section 3.3.4, we will look into the corresponding 
HTML components that are required to layout and decorate the dashboard. 
The cascading style sheets (CSS) to allow aesthetically and user-friendly 
dashboards are discussed in detail in Section 3.3.5. Popular visualization 
techniques are introduced in Section 3.3.6 with explanations about how Plotly 
can be integrated into a dashboard code. Finally, we will talk about the very 
crucial callback mechanism (Section 3.3.7) to create some kind of dialogue 
between the users and the user interface with all of its components and 
visualizations by allowing inputs/outputs in the user interface, modifying the 
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Dash core components that can come in the form of menus, sliders, text fields, 
and date pickers, but also in the typically visually more detailed diagrams, 
charts, and plots that are also considered as Dash core components but those 
are based on Plotly code in this book. 

3.3.1 Reading and parsing in a dashboard 

Data can come in a variety of forms (see Section 2.1.1), ranging from 
simple data types like quantitative, ordinal, or categorical/nominal data to 
more complex data types like relational/hierarchical, uni-, bi-, tri-, or mul-
tivariate/tabular, textual, or trajectorial data, also with a dynamic, that is, 
time-varying nature [4]. Depending on the data types it might be stored on 
different data files in various data formats. However, reading and parsing 
the data by using Python code is necessary to get the data in a usable form 
into the dashboard, that is, to allow graphical depictions of it. Reading data 
can be done in a standard method by just reading a text or binary file in the 
traditional way (see Section 4.8) or in cases the data exists in a tabular, Excel 
table-like, form with rows and columns, it can be read by a so-called Pandas 
DataFrame [169]. This is also possible for data that is updated regularly as 
real-time data [228]. Even more, the data might be stored locally, on one’s 
own computer, or remotely on a server, making a remote access via a URL 
to a possible solution. No matter how the data exists and where it is stored, 
we should be able to store the data in certain data structures and variables to 
make it processable and accessible quickly and effortlessly, that is, efficiently 
and effectively. 

Table 3.2 Some rows and columns with attribute values serve as an example dataset for the 
following code. 

An example tabular data with several attributes 
Name Gender Age Smoker Hobbies 
Lucas Male 45 No Football, Tennis, Jogging 
Emma Female 38 Yes Cooking, Swimming 
Bob Male 52 Yes Baseball, Walking 
Martha Female 32 No Hiking, TV 
Roy Male 40 Yes Theater, TV 

1 import  pandas  as  pd  
2 

3 df  =  pd .  read_csv ( " hobbies  .  csv " ) 

Listing 3.6 Reading a csv file containing people with some personal attributes. 
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As we can see in Listing 3.6, reading tabular data (like the example tabular 
data in Table 3.2) is not a big issue in Python, in case, this table is given in 
a csv format, that is, in a comma-separated-values format (stored as a file 
with name "hobbies.csv"). We can make use of a Pandas DataFrame to read 
the data file in exactly that format in just one line of code. It may be noted 
that the correct file path must be specified in order to get positive reading 
results. However, in this form, the data is still sleeping in a DataFrame and 
has to be transformed and visualized, but fortunately, doing the plain vanilla 
transformations and visualizations is also not very difficult, as we will see 
later (again). 

Exercises 

• Exercise 3.3.1.1: Create a new table with rows and columns similar to 
the given data table from above and read it by using a Pandas DataFrame. 

• Exercise 3.3.1.2: Read an arbitrary text file, for example, a page from 
a book. Also, read a file that contains an image from one of your last 
holidays. Is there a difference between reading text and image files? 

3.3.2 Data transformation in a dashboard 

Only reading and parsing the data into a specific format are actually crucial 
but also boring operations, a data transformation finally helps to compute the 
most important data patterns algorithmically. For example, preprocessing the 
data to aggregate it or to interpolate between two numerical values to fill data 
gaps are data transformations. Transforming data could mean everything we 
apply to data that modifies it by restructuring it in some way [247]. Also 
more complex operations might be imaginable like clustering [254] the data 
or projecting [235] it to a lower dimension in case it is a multivariate or 
high-dimensional dataset. Also, a matrix reordering [20] belongs to such data 
transformations, meaning to permutate the rows and columns of a matrix, 
like an adjacency matrix for networks [106], to compute some kind of struc-
ture and order among the network vertices based on their relations among 
each other (see Tables 3.3 and 3.4 for a reordering strategy to derive some 
meaningful group patterns among the matrix entries). There are various data 
transformation strategies, typically being applied for solving one or several 
tasks at hand to compute some structures in a dataset that would otherwise 
not be visible, hence a visualization of such unstructured data would not be 
meaningful to detect patterns and anomalies. 
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Table 3.3 An unordered matrix of zeros and ones. 
An unordered matrix of zeros and ones 

A B C D E F G H 
A 1 1 0 0 0 1 1 0 
B 1 1 0 0 0 1 1 0 
C 0 0 1 1 1 0 0 1 
D 0 0 1 1 1 0 0 1 
E 0 0 1 1 1 0 0 1 
F 1 1 0 0 0 1 1 0 
G 1 1 0 0 0 1 1 0 
H 0 0 1 1 1 0 0 1 

Table 3.4 An ordered matrix of zeros and ones, based on the matrix in Table 3.3. 
An ordered matrix of zeros and ones 

F B G A H D C E 
F 1 1 1 1 0 0 0 0 
B 1 1 1 1 0 0 0 0 
G 1 1 1 1 0 0 0 0 
A 1 1 1 1 0 0 0 0 
H 0 0 0 0 1 1 1 1 
D 0 0 0 0 1 1 1 1 
C 0 0 0 0 1 1 1 1 
E 0 0 0 0 1 1 1 1 

As mentioned before, data transformation can mean anything related to 
modifying the input data. The biggest challenge in this step is to implement it 
in an efficient way (if this is possible) and even more, put the corresponding 
Python code to the right place to avoid runtime issues. In some situations, the 
data transformations can be precomputed, that is, computed before the users 
of a visualization tool or dashboard explicitly request them. To reach this 
goal, the precomputed structures are stored somewhere on a server or locally 
(if space allows) to avoid computing the same values all the time again and 
again to reduce the computation time when the tool is running. In some other 
situations we cannot precompute the data since we do not know what the users 
are asking for, and computing all possible outcomes is impossible due to the 
immense amount of variations, depending on the parameter space and the 
decisions of the users. Consequently, the rule of thumb would be to compute 
anything that can be computed before and for all other computations, we have 
to come up with the most efficient algorithm that we can find to avoid runtime 
issues during the running program [36]. 
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Exercises 

• Exercise 3.3.2.1: If we had an Excel table full of numerical values what 
would be meaningful data transformations that we can apply, from the 
perspective of the rows and the columns? 

• Exercise 3.3.2.2: Aggregating a list of numerical values, for example, 
the temperature at a place every minute, into an hourly form reduces the 
amount of data. Which ways can you find to compute aggregated values 
in a time interval? 

3.3.3 Dash core components 

The dash core components can be imported by the code line in Listing 3.7 
and have the purpose of allowing users to modify data, hence serving as input 
options. Furthermore, the dash core components can even show results of a 
user interaction [258], that is, serving as output options as well. Classical 
ways for making inputs are by using menus, sliders, date pickers, text fields, 
and many more provided by the dash core components (see Figure 3.9 for a 
slider and a drop-down menu). Creating a range slider between the range 0 
and 10 with the selected interval [2, 6] instead of a standard slider is shown 
in the code in Listing 3.8. It may be noted that all of the components can be 
visually decorated in some way, for example, a range slider can become more 
aesthetically appealing [5] and user-friendly if a scale with labels is added 
to it [232]. Ways to create outputs are diagrams, tables, or just textual infor-
mation. The diagrams and tables can be created by means of Plotly Express 
(see Sections 3.1.3 and 3.3.6). But also menus, sliders, date pickers, and so 
on can produce outputs, for example in cases in which they change their 
visual appearance based on user interactions. On the other hand, diagrams 
and tables might also be options for making user inputs, for example, clicking 
on a visual element in a diagram or selecting a table entry, will generate 
information on which a user interface or a visual component can react. 
Dash core components could also be classified in, user interface components 
and visualization components, instead of an input/output classification. User 
interface components are the ones with respect to the functionality of the 
interface while the visualization components are those that focus on the visual 
output, focusing on visual data explorations by means of diagrams, charts, 
and plots. 

1 from  dash  import  dcc  

Listing 3.7 Importing the Dash core components. 
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1 from  dash  import  dcc  
2 

3 dcc  .  RangeSl ider  (  
4 min=0, 
5 max=10, 
6 value  =  [ 2  , 6 ]  
7 ) 

Listing 3.8 Creating a range slider as a Dash core component. 

(a) 

(b) 
Figure 3.9 A slider (a) and a drop-down menu (b) created as Dash core components. 

Exercises 

• Exercise 3.3.3.1: Implement a drop-down menu as a dash core compo-
nent that has five labels for cities in the world while the second and 
fourth city are already preselected by default. 

• Exercise 3.3.3.2: Implement a slider with a range from zero to 100 while 
the value 20 is preselected. 

3.3.4 Dash HTML components 

HTML stands for the HyperText Markup Language which is a way to model, 
arrange, design, and display content that is shown in a web browser [90, 259]. 
HTML is quite simple with only a limited number of possible document 
features such as headlines of different (but fixed) font sizes, headings, para-
graphs, line breaks, horizontal lines, lists, links, or tables, to mention a few. 
All of those features are indicated by so-called tags, while each feature has 
its own tag. Moreover, some HTML features can be nested into each other, 
just like a hierarchical structure [215]. Such a hierarchy is important for 
a dashboard design since each dashboard consists of the main web page, 
in which subpages or subregions are located and even more fine-granular 
substructures depending on the dashboard designer. HTML is guiding this 
structuring process; the components themselves are typically augmented by 
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additional Dash core components. The cascading style sheets (CSS) (see 
Section 3.3.5), on the other hand, and further languages like JavaScript can be 
used to enhance the visual appearance of such browser content by allowing to 
adapt border sizes, paddings, and margins for example as well as colors and 
many more visual features. HTML is actually responsible for the interface 
appearance, that is, since a dashboard can be regarded as some kind of web 
page (or several of them in a linked manner), the HTML components and their 
layouts, sizes, and additional features model the structure of a dashboard. 
Consequently, we need a way to model a dashboard as some kind of HTML 
structure which is supported by the so-called Dash HTML components which 
have to be imported first to work with them as with the Dash core components 
(see Listing 3.9 for the import that is required in this case). 

1 from  dash  import  html 
Listing 3.9 Importing the Dash HTML components. 

1 from  dash  import  html 
2 

3 html . Div ( [ 
4 html .H1( "My f i r s t Dash HTML component" ) 
5 ] )  

Listing 3.10 An example for an HTML headline with Dash HTML components. 

Listing 3.10 shows an HTML headline as a Python implementation as a 
Dash HTML component. In Listing 3.11 we can see the same piece of code 
given in pure HTML with opening and closing tags. 

1 <div> 
2 <h1>My f i r s t Dash HTML component</h1> 
3 </div> 

Listing 3.11 HTML code for the Dash HTML component in Listing 3.10. 

Exercises 

• Exercise 3.3.4.1: Use the Dash HTML components to implement three 
different headlines of sizes H1, H3, and H5 placed below each other and 
stating what their size is. 

• Exercise 3.3.4.2: Include a headline of size H1 and below that a drop-
down menu by combining the corresponding Dash HTML and Dash core 
components. 
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3.3.5 Cascading style sheets (CSS) 

Apart from pure HTML, there are further ways to visually enhance or 
decorate a dashboard which can be achieved by using the cascading style 
sheets (CSS), for example. This is a so-called style sheet language and can 
be applied on several levels like inline, internal, or external CSS, depend-
ing on what granularity the visual enhancement is made. CSS can affect 
the appearance of many elements in a dashboard ranging from formatting 
specifications to more complex layouts as well as simpler effects focusing 
on background images, visual variables [170] like colors, font sizes, shapes, 
or Gestalt laws [147] like visual components, element distances, similarities, 
and many more. CSS can even be used to allow dashboards to be shown on 
several output displays like small-, medium-, or large-scale displays [210] 
(smartphones, laptops, and powerwalls) and even more, it can also be used 
to adapt based on certain other modalities like speech or braille [68] for 
supporting blind people when reading content, a powerful concept that should 
definitely also be used for dashboards. 

The general case for using CSS is by external .css files. However, internal 
or inline CSS are typically also used in smaller projects with a small number 
of code lines. Inline CSS is more flexible since it allows to put a CSS 
command to the right places in the HTML document, but negatively it creates 
a lot of extra text input, which could be mitigated when using external CSS. 
In case one property has to be changed for all components of a certain type, 
one has to find all places in the code and change this inline CSS, for external 
CSS, we only have to adapt one tag. The good thing here is that external 
CSS commands are overwritten by internal commands, which are overwritten 
by inline commands, hence the cascading effect, from external to internal to 
inline. As an example we could look into an inline CSS command that is 
responsible for setting the text color of an H1 HTML element to a certain 
color, in this special case the color blue (see Listing 3.12). 

1 <h1  s t y l e=" co l o r : b lue ; ">A  t ex t  in  blue</h1> 

Listing 3.12 An example of using CSS to set a font color of an H1 headline in HTML to 
blue. 

In a dashboard code in Python, the CSS command could be integrated like 
the example given in Listing 3.13 in Line 6. We see that there is some kind 
of syntactic difference between pure HTML and the Python code for creating 
dashboards. 
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1 from  dash  import  Dash , dcc , html 
2 

3 app = Dash (__name__) 
4 

5 app .  l ayout  =  html . Div ( [  
6 html .H1( "A  t ex t  in  blue "  ,  s t y l e  =  { ’ c o l o r ’ : ’ b lue  ’ })  
7 ] )  
8 

9 i f  __name__ == ’__main__ ’ : 
10 app .  run_server ( debug=False )  

Listing 3.13 Integrating a CSS command into the code for a dashboard. 

Exercises 

• Exercise 3.3.5.1: Create a headline in HTML in size H3 with a green 
text color. Use inline, internal, and external CSS commands. 

• Exercise 3.3.5.2: What are the benefits of using external CSS? What are 
the drawbacks? 

3.3.6 Plotly in a dashboard 

Diagrams, charts, plots, that is, visualizations also equipped with interac-
tion techniques can be integrated into a dashboard by using Plotly Express 
(Section 3.1.3). A multitude of diagrams can be created focusing on showing 
patterns in data, in a dashboard implementation they can just be included by 
treating them as regular Dash core components (see Line 11 in Listing 3.14 
for an example of a scatterplot in Plotly Express integrated into dashboard 
code). This fact makes them displayable just like any other component 
in the layout of a dashboard, while also CSS commands can be used to 
manipulate, to layout, to style, to visually augment, or to decorate them, even 
more they can be given a distance, margin, or padding with respect to other 
components in the dashboard, to make them aesthetically appealing and user-
friendly [217]. Mostly, the diagrams serve as output components, showing the 
results of applying an algorithm [62] or just visually representing a dataset, 
while the integrated interaction techniques [258] can be useful to even regard 
them as input components, for example to manipulate other components 
based on the interactive requests or modifications users made to a Plotly 
diagram. This feature is a bit more complex to implement than the standard 
plain vanilla form of just showing the data visually while manipulating 
parameters in a drop-down menu or by moving a slider for example, however, 
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lots of fancy visual and interactive enhancements are possible as we will 
illustrate in Chapter 5 with some runnable dashboard examples, ranging from 
simple ones to those equipped with many more features. 

1 from  dash  import  Dash , html , dcc 
2 

3 app = Dash (__name__) 
4 

5 app .  l ayout  =  html . Div ( [ 
6 dcc . Graph ( id=’ p lo t1 ’ ,  f i g u r e  =  {})  
7 ] )  
8 

9 de f  update_graph ( ) : 
10 #  Plo t l y  Express  ,  df  =  DataFrame  
11 f i g  =  px .  s c a t t e r ( df ,  x=’ a t t r i bu t e 1 ’ , y=’ a t t r i bu t e 2  ’ ) 
12 

13 re turn  f i g  
14 

15 i f  __name__ == ’__main__ ’ : 
16 app .  run_server ( debug=False )  

Listing 3.14 Integrating a Plotly Express diagram into the code for a dashboard. 

Exercises 

• Exercise 3.3.6.1: Read a tabular dataset, for example, by using a Pandas 
DataFrame and include a Plotly diagram in the form of a scatterplot that 
shows the correlation behavior of two attributes from the tabular dataset. 

• Exercise 3.3.6.2: Add another Plotly diagram in the form of a histogram 
below the scatterplot that shows the distribution of one attribute, that is, 
we should see two Plotly diagrams at the same time now. 

3.3.7 Callbacks 

Callbacks describe some kind of linking between the inputs and outputs, that 
is, each time an input or several of them are changed by the users the cor-
responding outputs will be updated. This can be the value of a slider (which 
is a Dash core component) that is updated, and hence, as a consequence, 
one or several Plotly diagrams (which are also Dash core components) have 
to be updated as well. By the callback mechanism, we create some kind of 
interaction possibility, that is, a dialogue between users and the dashboard 
or visualization tool. Without a callback, we would not have a chance to 



3.3 Interplay between Dash, Plotly, and Python 99 

modify the visual appearance of a dashboard on users’ requests, that is, it 
would remain a static picture which is not the effect that we are planning 
to have. The number of inputs and outputs is actually not limited, but if too 
many inputs are allowed this might cause confusion effects on the user side. In 
some cases, it is better to reduce the ways to modify parameters, to achieve a 
user-friendly [230] and nonoverloaded visualization tool. Moreover, the more 
modifications are allowed, causing changes to various outputs, the more com-
plex the corresponding Python code will get, but still, Dash and its callback 
mechanism help to reduce the amount of programming work to get ready 
for even more complex dashboards with a lot of interactive features. Even 
multiple callbacks are possible, but we will move the explanation of them to 
Chapter 5, in which we show simple and complex dashboards together with 
their implementation details. However, before starting to create callbacks, we 
should import the required concepts (see Listing 3.15). A callback mechanism 
is illustrated in the code example in Listing 3.16. 

1 from  dash  import  Input , Output 

Listing 3.15 Importing the Dash dependencies to allow a smooth callback mechanism 

1 import  pandas  as  pd  
2 import  p l o t l y  .  expre s s  as  px  
3 

4 from  dash  import  Dash , Input , Output , dcc , html 
5 

6 app = Dash (__name__) 
7 

8 df  =  pd .  read_csv ( "K:\\ Desktop\\Data\\ quakes . csv " ) 
9 

10 app .  l ayout  =  html . Div ( [ 
11 html .H1( "Quakes" ,  s t y l e  =  { ’ text  - a l i g n ’ : ’ c en t e r  ’ }) ,  
12 html .H4( "Many  Facts "  ,  s t y l e  =  { ’ text  - a l i g n ’ : ’ l e f t ’ }) ,  
13 

14 dcc . Dropdown( 
15 id=’  l o c a t i o n  ’  , 
16 opt ions  =  [ { " l a b e l  " : "Asia "  , " value "  : ’AS ’ } ,  
17 {" l a b e l  " : " Aus t ra l i a "  , " value "  : ’AU’ } ,  
18 {" l a b e l  " : "Europe" , " value "  : ’EU ’ } ] ,  
19 mult i  =  False  ,  
20 value=’ Asia  ’  , 
21 s t y l e  =  {"width"  : "40%"} 
22 ) ,  
23 

24 dcc . Graph ( id=’ p lo t1  ’ ,  f i g u r e  =  {}) ,  



25

26 dcc . Graph ( id=’ p lo t2 ’ ,  f i g u r e  =  {})  
27 ] )  
28

29 @app .  ca l l b a ck  (  
30 [ Output ( 
31 component_id=’  p lo t1  ’  , 
32 component_property=’  f i g u r e  ’  
33 ) ,  
34 Output ( 
35 component_id=’  p lo t2  ’  , 
36 component_property=’  f i g u r e  ’  
37 ) 
38 ] ,  
39 [  Input  (  
40 component_id=’  l o c a t i o n  ’  , 
41 component_property=’  value  ’  
42 ) 
43 ] 
44 ) 
45

46 de f  update_graph ( opt ion_s lc td ) :  
47 d f f  =  df  . copy ( )  
48 d f f  =  d f f [ d f f [  " l o c a t i o n  " ]  ==  opt ion_s lc td ]  
49

50 f i g  =  px .  s c a t t e r (  
51 df f  ,  
52 x=’ magnitude  ’  , 
53 y=’ depth  ’  , 
54 c o l o r  =  "depth"  
55 ) 
56

57 f i g 2  =  px .  s c a t t e r (  
58 df f  ,  
59 x=" l a t i t u d e "  , 
60 y=" long i tude "  , 
61 c o l o r  =  "magnitude"  , 
62 s i z e  =  "depth"  
63 ) 
64

65 re turn  f i g  ,  f i g 2  
66

67 i f  __name__ == ’__main__ ’ : 
68 app .  run_server ( debug=False )  

Listing 3.16 Python code showing the mechanism of callbacks 
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html . Br ( ) , 
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Exercises 

• Exercise 3.3.7.1: Implement a simple dashboard with one range slider 
whose values are used to update a corresponding scatterplot, that is, the 
range slider is used here as a numerical interval filter. What are the inputs 
and outputs of the callback function? 

• Exercise 3.3.7.2: Implement another dashboard with two range sliders 
allowing to filter two numerical attributes while the effect of the filters 
is interactively shown in a scatterplot. 

3.4 Deploying 

Another important stage during the development of a dashboard is the deploy-
ment of it to make it available for everybody who has a web browser and 
internet access. Technically, this is easily possible but it brings various other 
challenges into play, also taking into account the visual and interface design. 
In case a dashboard is accessible from any place in the world, the users 
have a multitude of properties ranging from language differences, cultural 
habits, signage, symbols, reading directions, and many more [93], typically 
including the visual variables like colors, shapes, icons, all of them having 
different meanings depending on the users. Hence, deploying does not only 
mean to put the dashboard online, but it has to be done in a way that it is 
focusing on the users’ experiences and environments. Making a visualization 
tool available for anybody on earth can be a difficult task if it is to fulfill 
all of the users’ needs and requirements. Consequently, it is a good advice 
to consider the possible users already in the design phase to not run into 
problems after the tool is finally deployed. Also, the application domain can 
require differences in the tool’s setup, for example for analyzing car traffic 
data it makes a difference if the traffic runs on the right or left street side. In 
the medical sector, there might be different diseases and viruses that require 
different analysis and visualization techniques, creating a dashboard for any 
kind of application scenario is not possible. Moreover, domain experts [257] 
have to be recruited to create a dashboard for specific scenarios, a fact that 
can come up with high costs. 

In this section, we take a look at possibilities to deploy a dashboard, 
that is, to make it publicly available online in a web browser. Section 3.4.1 
describes one popular way to do that by making use of Heroku. The chal-
lenging issue apart from the technical problems are the users themselves 
who are now international ones instead of national or local users with 
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different cultures and symbol or signage understanding and interpretation 
(Section 3.4.2). One good aspect of online dashboards comes from the fact 
that we can access users with a multitude of backgrounds, helping to evaluate 
the dashboard and its algorithmic, visual, and interface components (Sec-
tion 3.4.3). Finally, we will give a brief overview of drawbacks and benefits 
when creating an online dashboard that is accessible by everybody in the 
world (Section 3.4.4). 

3.4.1 Heroku 

Actually, we do not need to deploy a dashboard, that is, a Dash app. It 
typically runs locally, on our own machine, on so-called localhost. The 
URL for accessing the localhost is given after the compilation phase of the 
dashboard’s Python code is finished. Typing in this URL in a web browser 
or clicking on it will successfully show the created dashboard with all of its 
functionality. However, to go one step further, it is of special interest to deploy 
the Dash app to a certain kind of server, to share it with our worldwide users, 
even by hiding it behind a login and a password. There are various ways to 
share a dashboard on a server, but one specific way to do that is by making use 
of a Heroku server [81]. This kind of server platform provides an easy way 
to deploy so-called Flask-based applications, as we have talked about already 
in Section 3.1.2. For more detailed instructions, we recommend to read the 
tutorial at https://dash.plotly.com/deployment. Actually, in summary, we only 
need four steps to get it running, which are in a condensed form: 

1. The creation of a project folder for the dashboard 
2. The initialization of this project folder 
3. The initialization of the project folder with an example application 
4. The initialization of Heroku 

In cases, we modify and extend the dashboard code, we have to proceed 
with a fifth step that has to be repeated each time a modification or extension 
is made, which is the redeployment. 

Exercises 

• Exercise 3.4.1.1: Create a dashboard that reads a small tabular dataset 
(an Excel table) with numerical values for the attributes. The dashboard 
should show a scatterplot for two columns of the tabular dataset, and 
there should be an option to filter values. Deploy this simple dashboard 
to Heroku. 

https://www.dash.plotly.com
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• Exercise 3.4.1.2: Let your dashboard run in different web browsers like 
Google Chrome, Mozilla Firefox, Opera, or Microsoft Edge and try to 
spot the differences. 

3.4.2 International users 

Deploying a dashboard means to make it accessible online, for everybody 
who has access to the internet and who has a web browser in which the 
dashboard is running properly. But such international users [241] bring into 
play a few new challenges that we are not confronted with when only working 
locally on our own computer. Not only challenges have to be tackled, and 
we can also see the international users as a great opportunity, for example, 
to evaluate a dashboard from a multitude of user perspectives, people with 
different backgrounds, knowledge, and experience. 

On the challenging side, we see that our international users speak dif-
ferent languages, hence the best option is to keep the dashboard design in 
English [193] and/or allow to switch to another language-on-demand. The 
problem here is that we cannot easily support all possible languages and 
dialects in the world, technically, it is possible, but strategically, we would not 
suggest such a solution. Another problem comes from the reading direction, 
which is top-to-bottom and left-to-right in Western-civilized countries but 
which is not the case in Asian or Arabic countries. Actually, this is a challenge 
for the dashboard design that typically follows some kind of layout focusing 
on an exploration strategy. For example, the input parameters are placed on 
the left-hand side and we might fill in a form from top-to-bottom and from 
left-to-right. But how would Japanese people fill in the corresponding param-
eter values? They might be confused in the beginning. The only solution in 
such a scenario would be to request the desired layout from each user and 
setup the dashboard in a good layout or to link it to the language. It is also 
not only about the reading direction and the layout focusing on the interface 
design, and it is also about the visual design that is composed of many 
visual variables including color, shapes, positions, sizes, and so on. Color is a 
good example [245, 246] that has to be treated with care for international 
users. Colors can have different meanings, depending on cultural aspects, 
for example. Also, the signage, symbols, or icons go in the same direction 
and have to be adapted, depending on the fact which kind of users we are 
confronted with. 

Positively, we must say that international users bring into play new 
beneficial aspects as well. The more users a dashboard has the more popular 
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the dashboard is, and this honor falls back to the designers and implementors 
of the dashboard. We can record valuable feedback by asking the users in 
some kind of crowdsourcing user experiment [2] which features they liked 
and which ones not or what they consider improvable. This feedback can be 
collected in a textual form by letting them type in text in a feedback form in 
the dashboard or by showing some kind of Likert scale [221] ranging from 
very good (5) to very bad (1) in the dashboard to, get numerical instead of 
qualitative feedback. Numerical values are easier to evaluate than textual 
feedback, but they are also some kind of aggregated measure. Moreover, 
the mouse cursor can be tracked and stored over space and time as well as 
mouse clicks. This gives a more detailed impression of the user behavior; 
however, the mouse movements alone do not give us any feedback on the 
cognitive processes that the users are confronted with. The biggest issue 
here, no matter which kind of data is recorded from the international users, 
comes from the fact that the data itself is not reliable since it is acquired in 
some kind of uncontrolled user study in which we cannot control the users 
and in which we do not know much about the users, apart from their IP 
addresses. We might ask about personal details, but we can never be sure 
if those details are true. The recorded data itself is also a problem. It is quite 
hard to analyze the data for patterns, correlations, and anomalies, actually 
we are interested in the user behavior when they are given a certain task, 
that is, we want to detect design flaws in our dashboard based on the user 
behavior. 

Exercises 

• Exercise 3.4.2.1: Imagine your dashboard has to be created for an 
international market with users from Europe, Asia, and South America. 
Discuss important visual design and interface design features that have 
to be taken into account to make it usable for all those users. 

• Exercise 3.4.2.2: If we integrate user data into the design of our 
dashboard, which kind of user data should be considered, and how 
trustworthy and reliable is such user data (since we do not know who 
the real users are)? 
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3.4.3 Online user evaluation 

A user evaluation in an online setting can be beneficial if we are interested 
in many study participants, that is, in some kind of crowdsourcing exper-
iment [2]. The big challenge, in this case, is the fact that the experiment 
happens in an uncontrolled way, meaning the recorded data might not be 
reliable enough to get statistically significant results. However, the recorded 
data might be usable as some kind of pilot study to indicate some kind of trend 
in the user behavior. This trend can be used as an inspiration for hypotheses 
and research questions that can be evaluated in follow-up experiments, maybe 
in a controlled user study setting, for example, in a laboratory. Consequently, 
recording user-related data in an online study is a good idea, but the data has 
to be treated with care, to not lead to drawing wrong conclusions. Another 
problem with the online study is that there is no concrete user task to be 
solved, actually the users just play around with the provided dashboard but 
they are not guided in a specific direction. One might say we could limit the 
functionality of the dashboard, but, on the other hand, we also wish to show 
the dashboard in its entirety with all integrated functions, features, and visual 
components. 

The controlled studies typically limit the number of study participants 
since the control requires more preparation time and an experimenter who is 
present in the lab all the time to control whether the study participant is doing 
the right things. Also eye tracking [44, 87, 123] comes into play here, helping 
to record the eye movements of the study participants to analyze their visual 
attention behavior. Eye tracking could also be applied in an online web-based 
scenario, however, this brings us back to the uncontrolled study setting. Even 
more, although a lot of data about user behavior, visually, verbally, or based 
on performance measures is collected, we need further approaches from 
the fields of statistics, data science, and/or visual analytics to find patterns, 
correlations, or anomalies in the textual, numerical, or spatiotemporal data 
which is another tedious task and opens new perspectives for completely new 
research fields. 

Exercises 

• Exercise 3.4.3.1: Create a simple dashboard, deploy it, and include a 
text field for recording qualitative feedback of online users. How do you 
advertise your dashboard to get enough study participants? 
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• Exercise 3.4.3.2: Add a feature to the dashboard to track the movements 
of the mouse cursor as well as mouse clicks. Can you find some patterns 
in the recorded user behavior data? 

3.4.4 Benefits and drawbacks of online dashboards 

When summing up the facts about deploying a dashboard, that is, making it 
accessible to everybody on earth, we can identify several important positive 
and negative points. Some major benefits could be listed as follows: 

• Popularity: Having access to a dashboard on the web increases its 
possible success since many more people can use it. However, we need 
to advertise it to give people the chance to use and test it, and maybe 
finally pay for the services provided by it. 

• Number of users: An online version of a dashboard can increase the 
number of people using it. Hence, the large number of users can serve 
as some kind of stress test of the dashboard for all, the visual, the 
interactive, as well as the algorithmic components. 

• User behavior: Many users means having the chance of collecting and 
recording data that describes the user behavior. This can come in the 
form of qualitative textual feedback or in the form of mouse movements 
and mouse clicks. Evaluating and analyzing this data can give insights 
in design flaws that are worth improving. 

• Application domains: Today, there is a multitude of application 
domains that have to tackle data science and data visualization problems. 
Consequently, creating an online dashboard can be a great success if it 
can handle data from several application domains. 

Although there are many positive aspects of deploying a dashboard, we 
can also find several drawbacks that we come across during the design and 
implementation phases: 

• Technical issues: Deploying means integrating more visual and inter-
face features to make a dashboard usable for everybody. Moreover, we 
need to "install" it on a server which requires some knowledge about this 
additional functionality. 

• User requirements: Making a dashboard accessible to everybody 
brings new challenges into play since people have different needs and 
requirements depending on the fact about where they live or where they 
have grown up, focusing on cultural issues. 
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• Ethics and privacy: We might draw wrong conclusions from our own 
data just by using a dashboard designed and implemented by someone 
else. This might be due to a missing experience to work with a dash-
board. Moreover, new questions arise asking about if it is allowed to use 
the data uploaded by others. 

• Environments: Deploying a dashboard has to take into account different 
displays like small-, medium-, or large-scale ones. Also, the operating 
systems of the users can have an impact on the functionality as well as 
the different web browsers, also in different versions. 

Exercises 

• Exercise 3.4.4.1: Describe the benefits that you would have when 
deploying a dashboard. 

• Exercise 3.4.4.2: Are the drawbacks when deploying a dashboard also 
depending on the application domain, that is, are there, for example, 
differences between geographic, medical, or educational applications? 
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4 
Coding in Python 

Writing programs in the programming language Python [236] is not that 
difficult as you might expect. Even if you are not an experienced program-
mer, there is still support to learn the most important Python constructs 
to finally implement the dashboard that you designed for visually explor-
ing your or other people’s data [255]. In this chapter we are trying to 
give a step-by-step tutorial on how to create Python programs, starting 
with simple instructions and more and more walking into the directions of 
much more complex programs including both functional and object-oriented 
programming paradigms. Since writing about Python programming can fill 
several books, we will only focus on the most relevant Python constructs 
to implement dashboards with some but not all possible functionalities. For 
the interested reader we suggest to read a more Python-specific book that 
provides many more insights into Python code constructs that are not used 
on an everyday basis, for example, to build dashboards for visually and 
algorithmically exploring data, or to analyze data based on machine learning 
and further data science concepts [28]. 

In the first few sections, we more or less use Python as some kind of 
calculator to mathematically evaluate arithmetic expressions, even Boolean 
expressions consisting of Boolean and relational operators as well as further 
arithmetic expressions. Those expressions build some kind of basic structure 
when writing computer programs since they describe how to put information 
together, how to aggregate and evaluate that to guide the control flow of a 
program. Unfortunately, programming is not as easy as writing expressions 
but more complex constructs are required like loops or conditionals, as well as 
data structures with one-dimensional lists being the basic ones from a longer 
list of possibilities including dictionaries, for example. For each subsection, 
we will provide some exercises that are worth solving by either using Jupyter 
Notebook for the simple ones or later, for the more complex ones, using 
an IDE like PyCharm or Spyder for example. This chapter can also be 
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studied as an introduction into Python programming without drifting away 
into dashboard design and implementation, however, we have written it as a 
tool to understand, develop, and extend dashboard code, focusing on solving 
certain user-defined data exploration tasks. 

We start the chapter with expressions (Section 4.1) that are impor-
tant ingredients to evaluate complex combined mathematical, relational, or 
Boolean problems, even supporting bitwise operations. In Section 4.2, we 
describe the most common basic and composite data types and explain the 
concept of variables, constants, and conversions. In Section 4.3, we have a 
look into strings and characters as well as into typical functions and methods 
to allow meaningful operations on them. To allow branching in the control 
flow, we describe the use of conditionals as well as exceptions that must be 
handled sometimes (Section 4.4). A certain number of similar executions with 
varying values can be modeled by loops that can occur as definite or indefinite 
ones (Section 4.5). To encapsulate functionality like subroutines that are used 
at several locations in the code, we introduce the concept of functions in 
Section 4.6. A mighty concept in programming is recursion that can be used 
in its standard form as well as tail recursion. Also, high-order functions and 
lambda expressions serving as anonymous functions are worth discussing 
(Section 4.7). To allow a communication with the users and to support them at 
tasks like data reading and writing, we explain the most important operations 
to work with data files (Section 4.8). Apart from functional or procedural 
programming paradigms, we can also create classes and objects, which is 
typically falling into the object-oriented programming paradigm which is 
discussed in Section 4.9. Again, we do not focus on completeness in this 
chapter, and we only want to describe the most important ingredients to get 
started in Python programming. 

4.1 Expressions 

Evaluating mathematical constructs composed of arithmetic expressions by 
adding, subtracting, multiplying, or dividing is one of the major ingredients 
in nearly any computer program. Such expressions can get quite long with 
a multitude of operators connecting the individual parts. It is important to 
understand in which order such expressions are computed, for example, 
prioritizing some expressions by using parentheses. Understanding the laws 
of execution and evaluation is an important ingredient to avoid errors that 
might be hard to locate later on in a computer program. Each operator has 
some kind of precedence in Python, and in any other programming language, 
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that decides which parts of a composite expression will be computed in which 
order. An expression can include a multitude of operators and operands, 
reducing to a certain value after its evaluation. Such values can be numerical 
or Boolean values, depending on the operators. All operators are given a 
well-defined precedence. In a composite expression, the operators of highest 
precedence are evaluated first. After those results have been computed, the 
operators of the next highest precedence are evaluated. This procedure goes 
on until the complete expression is evaluated to either a numerical or a 
Boolean value. In case operators have an equal precedence they are performed 
in a so-called left-to-right order, as in many other programming languages 
as well. 

In this section, we have a deeper look into arithmetic, relational, 
Boolean/logical, but even in bitwise as well as mixed expressions. Arithmetic 
expressions (see Section 4.1.1) are typically built on arithmetic operators like 
addition, subtraction, multiplication, division, or exponentiation operators. 
Relational expressions are based on comparison operators like smaller, larger, 
equal, not equal, and the like while they evaluate a Boolean value (see 
Section 4.1.2). Boolean or logical expressions use logical operators like and, 
or, not, and many more combined complex ones (which can be built by using 
the basic ones) to evaluate to a Boolean value (see Section 4.1.3). We also 
describe bitwise expressions that, as the name suggests, work on bits as their 
basic units (see Section 4.1.4). In many cases, the different expression types 
can be combined to create even more complex expressions, also known as 
mixed expressions (see Section 4.1.5). 

4.1.1 Arithmetic expressions 

Expressions can come in various forms, typically built on certain types of 
operators and operands. The operators can be understood as some kind of 
connecting symbols describing how the individual expression parts should 
be combined. The operands, on the other hand, are the basic values on 
which the operators make computations. The operators hence describe how 
to combine and the operands what to combine. Arithmetic expressions [97] 
are based on so-called arithmetic operators which exist in various forms in 
mathematical expressions like addition, subtraction, multiplication, division, 
or exponentiation (see Table 4.1). In the Python programming language, those 
are expressed by special symbols like +, -, *, /, and **. Moreover, we can 
distinguish between binary operators, that is, those that take two arguments 
and combine them into one, and unary operators, that is, those that just work 
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Operator Example Explanation Math formula 
+ x + y Add x and y (addition) x + y 
- x - y Subtract y from x (subtraction) x − y 
* x * y Multiply x and y (multiplication) x · y 
/ x/y Divide x by y (division, type float) x

y 

// x//y Divide x by y (division, type int) x
y 

** x ∗ ∗y x to the power of y (exponentiation) xy 

% x%y Divide x by y (modulo division) x mod y 
- −x Negative of x (unary) −x 
+ +x Positive of x (unary) +x 
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on one value and might change the sign of a value, for example, from a 
positive into a negative one. The good thing with expressions in Python is that 
they do not only work on raw values like integers and floating point numbers, 
but also on variables or even function calls that create a certain value as a 
result. 

Table 4.1 A list of arithmetic operators, some examples, their meanings, and mathematical 
notations. 

As already shown in Table 4.1, we can start building arithmetic expres-
sions by simply using the rules of arithmetic and then step-by-step connect 
more and more of such subexpressions to more complex ones. An example 
of a more complex arithmetic expression is given in Listing 4.1. Here, we 
also see the idea of evaluation precedence or priorities. The addition paren-
theses have the highest priority and express that the expressions contained 
inside the parentheses should be evaluated first. Then the multiplication and 
division operators have a higher priority than the additional and subtraction 
operators. If operators have the same priority level, the expression is evalu-
ated from left-to-right. By the way, the arithmetic expression in Listing 4.1 
evaluates to -42. 

1 4*3+2 -5*(7+3)  -2*3  #  eva lua t e s  to  -42  

Listing 4.1 An arithmetic expression 

Exercises 

• Exercise 4.1.1.1: Evaluate the following arithmetic expression: 

1 (4+3*7 -(3+5) *6) /3-17%3 

• Exercise 4.1.1.2: Evaluate the following arithmetic expression: 

3 -12+4**(3 -1) *0.1 -15//(4+3)  1 
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4.1.2 Relational expressions 

Apart from arithmetic expressions, we wish to make comparisons between 
values, typically by using operators like >, <, >=, <=, ==, or !=. Those 
describe relations indicating if one value is greater, smaller, greater or equal, 
smaller or equal, equal, or not equal to another value. The relational expres-
sions [69] evaluate to Boolean values, that is, True or False, depending on 
the outcome of the comparison. If a value x is greater than a value y, the 
comparison x > y evaluates to True, otherwise to False. Table 4.2 shows the 
most popular relational operators. 

Table 4.2 A list of relational operators, some examples, their meanings, and mathematical 
notations. 

Operator Example Explanation Math formula 
> x > y x greater than y x > y 
< x < y x smaller than y x < y 
>= x >= y x greater or equal than y x ≥ y 
<= x <= y x smaller or equal than y x   y 
== x == y x equal to y x = y 
!= x != y x not equal to y x = y 

Since relational expressions evaluate to Booleans they can be combined 
by Boolean or logical operators (see Section 4.1.3). A more complex example 
than the ones given in Table 4.2 can be seen in Listing 4.2 which evaluates to 
False since both, the left and right side of the comparison operator < evaluate 
to 17. Consequently, they have the same value, no value is smaller or larger 
than the other. It may be noted that comparisons between integer values are 
safe while comparisons between floating point numbers can be problematic 
and error-prone, in particular, if we compare for equality of two floating point 
numbers. 

1 (7*3 -4)  <  (4**2)+1  #  eva lua t e s  to  False  

Listing 4.2 A relational expression 

Although comparison operators are binary operators in the sense that they 
are applied to two expressions, that is, the left and right side of the operator, 
they can even be used in a sequence in the sense of a chained comparison. 
This means we can write 

1 w >  x >= y >  z  

instead of 

1 w > x and x >= y  and y > z  
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which is something like syntactic sugar, making the implementation of 
the code faster. But it has an additional benefit. In the shorter relational 
expression with the chained comparison, the intermediate expressions are 
only evaluated once which is not the case in the longer relational expression 
including the Boolean operator and. 

Exercises 

• Exercise 4.1.2.1: Evaluate the following arithmetic-relational expres-
sion: 

1 (4 -12) /8+1 > (9**0) 

• Exercise 4.1.2.2: Evaluate the following arithmetic-relational expres-
sion: 

1 (27//14)  - 1  !=  27 -(3*(4+5) )  

4.1.3 Boolean or logical expressions 

Boolean or logical expressions [66] are based on operators like "and", "or", 
and "not." The components of Boolean expressions are Boolean expressions 
themselves, but the individual components can occur as arithmetic or rela-
tional expressions. When a Boolean expression is completely evaluated its 
result will either be True or False. Those can be regarded as "Yes" or "No," 
speaking in computer science words also "1" and "0." Tables 4.3–4.5 illustrate 
simple Boolean expressions with the operators "and", "or", and "not" and the 
operands themselves being of Boolean values True or False. It may be noted 
that the first ones are binary operators and the third one is a unary operator. 

Table 4.3 The Boolean operator and. 
and True False 

True True False 
False False False 

Table 4.4 The Boolean operator or. 
or True False 

True True True 
False True False 
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Table 4.5 The Boolean operator not. 
x Not x 

True False 
False True 

An example of a more complex Boolean expression is given in List-
ing 4.3. The Boolean expression evaluates to False. It may be noted that 
the expression is composed of arithmetic and relational smaller expressions 
that build the entire expression. However, the result after the evaluation of a 
Boolean expression is always a Boolean value, either True or False, saying 
if a claim is true or not true, no matter what the smaller expressions evaluate 
to. The number of operators connecting expressions to Boolean expressions 
is unlimited, making such expressions to so-called compound expressions 
consisting of many components. Listing 4.3 shows such an example. 

1 (4+3*(6+1)<13) and (4 -3*2**3  ==  27)  or  ( not (24>3*2**3) )  
2 #  eva lua t e s  to  True  

Listing 4.3 An example Boolean expression composed of some other smaller expressions 
that are themselves arithmetic and relational expressions 

In cases in which we have a compound Boolean expression composed of 
many Boolean operators, we might ask whether all of the components are 
always evaluated. This is not the case for some special Boolean expressions. 
For example, a chained Boolean expression connecting all subexpressions 
with an "or" operator will only be evaluated completely if all subexpressions 
evaluate to False. Since the expression is evaluated from left-to-right, the 
first appearance of a True evaluation of a subexpression can stop the eval-
uation of all the other subexpressions since the entire expression will be 
evaluated to True anyways, no matter what the other subexpressions evaluate 
to. This strategy saves valuable computing time. This evaluation strategy is 
denoted by the term short-circuit evaluation [208] and was invented by John 
McCarthy. A similar strategy holds for a compound Boolean expression in 
which the subexpressions are connected by "and" operators. As soon as one 
subexpression evaluates to False the entire expression will evaluate to False, 
no matter what the evaluation of the other subexpression delivers. 

Exercises 

• Exercise 4.1.3.1: Evaluate the following arithmetic-relational-Boolean 
expression: 
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1 (4 -3*11 <0)  and (4**4==256) and (3 .13 >3.12)  

• Exercise 4.1.3.2: Evaluate the following arithmetic-relational-Boolean 
expression: 

1 (12 -3*4==0) or  (15 -3*5 > -1*1.2)  and ( not (28//4 >7.0) )  

4.1.4 Bitwise expressions 

Instead of using decimal values in expressions, we can also work with bitwise 
expressions. Those interpret the values to be operated as sequences of binary 
digits, that is, values only allowing 0 and 1. Bitwise operators can modify 
such binary values one bit after the other in various ways as can be seen in 
Table 4.6. 

Table 4.6 Bitwise operators, examples, their meanings, and binary versus decimal. 
Operator Example Explanation Binary Decimal 
& x & y bitwise and 010 & 110 = 010 2 & 6 = 2  
| x | y bitwise or 010 | 110 = 110 2 | 6 = 6  
∼ ∼ x bitwise negation ∼ 010 = 101 ∼ 2 = 5  
∧ x∧y bitwise xor 010 ∧ 110 = 100 2 ∧ 6 = 4  
» x » n n bitwise right shift 010 » 1 = 001  2 » 1 = 1  
« x « n n bitwise left shift 010 « 1 = 100  2 « 1 = 4  

A more complex example for a bitwise expression would be something 
like the expression in Listing 4.4. 

1 16 << 3 | 255 >> 2 #  eva lua t e s  to  191  

Listing 4.4 A bitwise expression 

Exercise 

• Exercise 4.1.4.1: Evaluate the following bitwise expression: 

1 5 & 13  & 3  |  14  

• Exercise 4.1.4.2: Evaluate the following bitwise expression: 

1 23  >>  2 & 23  |  (~17)  

4.1.5 Mixed expressions 

Actually, expressions can exist in various forms composed of subexpressions 
based on operands of several datatypes like integers, floating point numbers, 
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Booleans, but even Strings, or more complex objects. Also, the operators 
themselves can fall into the categories of arithmetic, relational, Boolean/logi-
cal, or bitwise operators. Such expressions are denoted in this book as mixed 
expressions. In cases in which an expression has a mixed character, we must 
understand the precedence of the individual operators which is given as an 
overview in Table 4.7 from highest to lowest precedence. The precedence of 
the operators describes in which order an expression is evaluated. Parentheses 
can be used to change the order of evaluation, that is, subexpressions in 
parentheses have the highest precedence. During evaluation of an expression, 
the subexpressions are evaluated from highest to lowest precedence, in case 
we meet equal precedence, a left to right evaluation order is used. 

Table 4.7 Operators and their precedences from highest to lowest. 
Operator Symbol(s) Precedence 
Arithmetic exponentiation ** 1 
Arithmetic/bitwise plus/minus/negation + - ∼ (unary) 2 
Arithemtic mult, div * / // 3 
Arithmetic plus, minus + - 4 
Bitwise shift « » 5 
Bitwise and & 6 
Bitwise xor ∧ 7 
Bitwise or | 8 
Relational comparisons == != < <= > >= 9 
Boolean not not 10 
Boolean and and 11 
Boolean or or 12 

A mixed expression could be composed of any kind of operators and 
operands, see an example in Listing 4.5 which evaluates to True. 

1 3*5+4*(6 -1)  >  3  or  4*3**2  <  4<<3  and 25//4>6 
2 #  eva lua t e s  to  True  

Listing 4.5 A mixed expression 

Exercises 

• Exercise 4.1.5.1: Evaluate the following mixed expression: 

1 4*(3 -5**2) /4  >  7  and  (3<<3)*7 -6  ==  9  

• Exercise 4.1.5.2: Evaluate the following mixed expression: 

1 (3+4)  *  (3  - 4 )  /  (3**2+4**2)  >=  6  and  (22/4  >5)  
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4.2 Data Types and Variables 

Data types and variables are a core ingredient in nearly any programming 
language. Each value should have a certain type which can be a basic data 
type or one that is more like a composite data type, allowing to put-together 
values of a multitude of different data types. Typically, in Python, we find 
classes and objects, on which also data types and variables are built. This 
means a data type is actually something like a template, that is, a class in 
an object-oriented programming language, and a variable is something like 
a container created from such a template or class, that is, an instance or 
object of this class, allowing to create as many variables of a certain well-
defined data type as we need during coding a Python program. Moreover, 
each value can be stored in such a variable created from a class, while the 
variable name is fixed but the content, that is, the value of the variable is 
modifiable as the name already suggests. Variables do not have to be given 
an explicit data type when they are declared since Python is some kind of 
weakly typed programming language [207], which is different in strongly 
typed programming languages [132] like Java. Moreover, variables cannot 
only change their values but they can even change the data type. 

In this section, we will learn about basic data types, which we consider 
as the numeric data types like integers (mathematically Z), floating point 
numbers (mathematically R), or complex numbers with real and imaginary 
part (mathematically C). Also, Strings, characters, and Booleans will be intro-
duced as basic data types (see Section 4.2.1). Composite data types, on the 
other hand, are those that behave like containers for several values, typically 
including values of different basic (but also composite) data types like lists, 
tuples, or dictionaries, to mention a few (see Section 4.2.2). In some cases it 
is a meaningful operation to convert between different data types, in case, it 
is actually possible (like converting the String 33 to the integer of value 33). 
The most prominent conversions are described in Section 4.2.3. To store the 
value of any data type, we need the concept of variables that is explained in 
Section 4.2.4 while we conclude the section by describing values that do not 
change during a program execution, called constants (Section 4.2.5). 

4.2.1 Basic data types 

Some basic data types [104] exist in Python which could be categorized into 
numeric data types like integer, floating point, or complex number. Other data 
types might be described as String for textual data consisting of characters 
and also Boolean for True and False values. Integers are those that contain 
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whole numbers, positive ones as well as negative ones, also the zero value. 
Those integers can be given to a certain base which could indicate that an 
integer value is binary, octal, decimal, or hexadecimal, for example (see 
Listing 4.6). If no prefix is given, the value is interpreted as decimal which 
is the default setting. Other base options are b for binary, o for octal, and x 
for hexadecimal. It makes no difference if the prefix characters are given as 
capitals or not. The length of the number, that is, in terms of the number of 
following digits is unlimited in Python; however, the computer’s memory is 
the limit. 

1 0b101 == 5 #  binary  ,  base  2  
2 0o101  ==  65  #  octa l  ,  base  8  
3 0x101  ==  257  #  hexadecimal  ,  base  16  

Listing 4.6 Integer values to several bases 

Apart from integer values we have to deal with real numbers which 
are given in Python with the so-called floating point numbers that can be 
recognized by a decimal point that divides the number into a prefix and a 
postfix. Additionally, we can use the exponent notation [19] to indicate the 
value of a floating point number which can be given as the letter e or E with 
an additional positive or negative integer expressing the exponent to the base 
10 (see Listing 4.7). 

1 13 .876  ==  13 .876  
2 . 81  ==  0 .81  
3 12 .  ==  12 .0  
4 . 32 e5  ==  32000.0  
5 3 .2 e -3  ==  0 .0032  

Listing 4.7 Examples of floating point numbers in different notations 

The complex numbers consist of a real part and an imaginary part that 
are given in the form r + ij in Python while r denotes the real part and i the 
imaginary part (see Listing 4.8 for examples). 

1 1 .89  +  2 .1 j  
2 2 .119  - 3 .14  j  
3 - 0 .97  +  1 .27  j  

Apart from the numeric values we can find textual values, typically called 
strings in Python. Each string has a finite length and consists of so-called 
characters, that is, a sequence of characters with a well-defined order. Python 
denotes string objects by using the data type str given in single or double 
quotes to make string numbers distinguishable from real numeric values, that 
is, the string 33 is different from the integer number 33 (see Listing 4.8). 
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It may be noted that an empty list is allowed in Python which is denoted 
by two single quotes ”. It might be seen as the equivalent to the value 0 or 
0.0 for integers or floating point numbers. Moreover, with so-called escape 
sequences, we can include special characters in a string like \’ or \", that is, 
the single or double quotes themselves, but even more of them like new line 
\n, tab \t, or carriage return \r, to mention a few. With an r prefix letter, we 
can avoid translating the escape sequences in a string, that is, they are just 
included in a string as they are. 

1 " He l lo  world  ,  how  are  you?"  
2 "33 i s a number , but here i t i s a s t r i n g . " 
3 ’A  s t r i n g  can  a l s o  be  wr i t t en  in  s i n g l e  quotes  .  ’  

Listing 4.8 Examples for strings 

Finally, the Boolean is a data type giving support for true and for not 
true values, that is, denoted by True and False in the programming language 
Python. We have seen examples for this already in Section 4.1.3 when we 
introduced Boolean expressions. 

Exercises 

• Exercise 4.2.1.1: What is the result of adding an integer number to a 
floating point number? 

• Exercise 4.2.1.2: Try the following expressions and describe the results: 

1 4/0  
2 4/0 .0  

4.2.2 Composite data types 

Not only the simple data types are of interest, also the composite ones. Those 
allow a combination of values of (even) different data types into one. The 
most important in-built ones to be mentioned here are lists, tuples, sets, 
or dictionaries. We might even create our own composite data types, for 
example, by defining classes from which we can derive objects and instances. 

A list can be regarded as some kind of container in which we throw data 
elements, with the deciding fact that the elements are given in a sequence 
hence, have an order which allows to access them via a well-defined index. 
The data elements in a list do not have to be of the same data type and a list 
can be extended, the values can be modified, as well as data elements can 
be removed, at any place in the list. To define a regular (one-dimensional) 



4.2 Data Types and Variables 121 

list, we use brackets that enclose the contained elements (see Listing 4.9). 
As you can see we start with one opening bracket, give the elements of 
the list separated by commas, and indicate the end of the list by a closing 
bracket. Lists in Python are zero-based, that is, the first element (the most left 
one) has the index 0 (and not 1 as we might start counting). Consequently, 
accessing individual elements from a list happens by the corresponding index 
on which the element can be found. This is done by putting the index into 
brackets, like myList[3] if the elements are stored in a list called myList. 
Typically, this is done by assigning the list to a variable (will be described 
in Section 4.2.4). To modify a value in a list at a corresponding position 
we can assign it a value at an index like myList[3] = 17.35. There are 
various other ways to access elements from a list, for example more than 
one at the same time. This can be done by myList[1:5], which gives back 
the values at indices 1–4, as another sublist. We can also give back the rest 
of a list starting from a corresponding index like myList[3:] which returns 
the elements from the given index until the end of the list. It may be noted 
that even two-dimensional, three-dimensional, or even n-dimensional lists are 
possible due to the fact that in Python we can add any kind of objects in lists, 
consequently also lists themselves, making them to lists of lists, or lists of 
lists of lists, and so on (see examples in Listing 4.10). 

1 [ 3  , 3 . 1 4  , False  , -23 ,3+4 j  , " He l l o " ] 
Listing 4.9 A list in Python with a few data elements 

1 myList  =  [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ]  
2 myList [ 3 ]  =  17 .35  
3 myList [ 1 : 5 ]  # =  [ 2 , 3 , 1 7 . 3 5 , 5 ]  
4 myList [ 3 : ]  # =  [ 5 , 6 , 7 ]  
5 my2DList = [ [ 1 , 2 , 3 , 4 ] , [ 5 , 2 . 1 1 , 9 ] , [ 0 , "Hi"  ] ]  

Listing 4.10 Accessing and modifying elements in a list 

We can also define tuples which have a deciding difference compared to 
lists. It is not allowed to modify tuples in Python after their creation which 
can be explained by the fact that those are immutable while lists, on the other 
hand, are mutable (we have seen that in Listing 4.10 already). A deciding 
benefit of tuples compared to lists is that their content cannot be changed 
which is useful in situations in which we should not be allowed to modify 
values in a data structure. Moreover, tuples are typically faster to be processed 
compared to lists. This means, in cases lots of operations have to be executed 
on data structures, we have to consider the usefulness of tuples, in case the 
content of our data structures will not be modified during those operations. 
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Listing 4.11 illustrates how tuples are created and how we can work with 
them. Here we also see that tuples are built by using parentheses () instead of 
brackets [] as in lists. 

1 myTuple = ( 3 . 1 4 , "Hi"  , True )  
2 myTuple [ 2 ] # = True 

Listing 4.11 Creating tuples and accessing values from them 

There is one more option to structure data elements apart from lists and 
tuples. Sets are another way in Python to create a collection of data elements. 
To indicate a set, we enclose the elements in braces {}, separated by commas. 
One more difference to lists and tuples comes from the fact that the elements 
in a set are unordered (see Listing 4.12 for examples using sets). This leads 
to the consequence that we cannot access the set elements by using an index 
since indices have no meaning at all if there is no explicit order given. As 
in set theory in the field of mathematics we can work with several sets, 
for example applying the well-known set operations like union, intersection, 
symmetric difference, and many more (we will introduce functions and 
methods in Sections 4.6 and 4.9.3). 

1 mySetA  =  {1  , 2  , 3  , 4  , 5}  
2 mySetB = {3 , 4 , 5 , 6 , 7} 
3 

4 mySetC  =  mySetA .  i n t e r s e c t i o n (mySetB) #  eva lua t e s  to  {3 ,4 ,5}  

Listing 4.12 Creating sets and applying operations 

The problem with sets is that we cannot access the elements contained 
in it by just asking about a well-defined index, that is, a position in the set. 
This is due to the fact that sets are unordered. However, there is one more 
data structure which is called a dictionary that actually also has no index but 
the access happens with so-called key-value pairs. This means, to access an 
element in a dictionary we just have to know the corresponding key, and we 
get the value to this key in return. Dictionary elements are also enclosed by 
braces, just like sets, the key-value pairs are separated by commas, and each 
key is separated from a value by a sign. A dictionary is also unordered but 
compared to sets we can access the elements by using the keys. Listing 4.13 
shows some examples for dictionaries and for accessing their values from 
keys. Dictionaries can be modified, that is, key-value pairs can be removed, 
new ones can be added, and they can be changed. Table 4.8 summarizes the 
most important properties of lists, tuples, sets, and dictionaries. 
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1 myDict = {"Name1" : "Peter "  , "Name2" : "Pan" , " year "  :  1976}  
2 myDict [ " year "  ] #  =  1976  

Listing 4.13 Dictionaries and accessing their values 

Table 4.8 Composite data types with special properties. 
Data type Enclosing Separator Example Mutual 
List [] , [1,3,2,6] Yes 
Tuple () , (1,3,2,6) No 
Set {} , {1,3,2,6} Yes 
Dictionary {} , and : {"A":1,"B":3,"C":2,"D":6} Yes 

Finally, classes can be implemented for creating more data structures like 
lists, tuples, sets, and dictionaries but for classes, objects, and instances we 
refer to Section 4.9. 

Exercises 

• Exercise 4.2.2.1: Given a list of natural numbers myList = [3,1,8,9,2]. 
Can you find a way to transform this list into a set with the same 
elements? 

• Exercise 4.2.2.2: Given two lists of natural numbers myListA = 
[3,1,2,4,3,8] and myListB = [4,5,1,3,7]. Write Python code to create 
a new list that contains all elements that are contained in both 
lists. 

4.2.3 Conversion between data types 

In some situations, it is a good advice to convert one value into another 
one, particularly in cases where the values have different data types. 
Each conversion function follows a different conversion strategy, hence 
there is no unique conversion function for any kind of involved data 
type pairs. Important functions to receive an int, a float, or a string are 
int(), float(), or str(). However, we have to make sure that the conversion 
can be applied in a meaningful way. For example, imagine we are 
going to convert the string ’hello’ into a floating point number. Is this 
a meaningful operation? Listing 4.14 shows some meaningful conversion 
examples. 
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1 i n t  ( 3 . 1 4 )  # =  3  
2 f l o a t  (100)  #  =  100 .0  
3 f l o a t ( ’ 3 .1415  ’ ) # =  3 .1415  
4 s t r  ( 4 2 . 9 9 )  #  =  ’ 4 2 . 99  ’  
5 s e t  ( [ 3 . 1 4  , 7  ,  - 3 ] )  #  =  {3 .14  , 7  ,  - 3}  
6 tup l e  ( {3 . 14  , 7  ,  - 3 } )  #  =  ( 3 . 1 4  , 7  ,  - 3 )  
7 l i s t ( ’Bye Bye ’ ) # =  [ ’B ’  , ’ y ’ , ’ e ’ , ’  ’ , ’B ’ , ’ y ’ , ’ e  ’ ]  
8 d i c t ( [ "A" , 1 ] , [ "B" , 2 ] , [ "C" , 3 ] )  # =  {"A" :1 , "B" :2 , "C" :3}  

Listing 4.14 Some meaningful conversions from one data type to another one 

Exercises 

• Exercise 4.2.3.1: Convert the floating point number 2.6176 into a 
corresponding integer. 

• Exercise 4.2.3.2: Given a string ’3.8821’. Convert the string into a 
floating point number and then into an int. Is it allowed to convert the 
string directly into an int? 

4.2.4 Variables 

A variable in Python is something like a container in which we can store 
values of a certain data type. When we define a variable, we make sure that 
some place is reserved in the memory for possible values contained in such a 
variable. Since each value has some well-defined data type, the variable that 
stores this value also carries this data type. A variable can be declared with 
a certain name and initialized with a certain value (see Listing 4.15). This 
is done by mentioning the name of the variable on the left-hand side of an 
equality sign and put its current value to the right-hand side of the equality 
sign. This order must be preserved. It may be noted that variables in Python 
can be redeclared at any time as well as their values can be modified, hence 
the name variable. Due to the weakly typed language character we can even 
change the data type of the same variable, for example, from an int to a string 
(see Listing 4.16). 

1 l ength  =  3 .89  

Listing 4.15 Declaring a variable and initializing it with a value 

1 l ength  =  3 .72  
2 l ength  =  "Given in meters "  

Listing 4.16 Variable redeclaration 
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Variables can even exist in two special forms characterized by the way in 
which we can access them and modify them. This brings into play local and 
global variables which are discussed in more detail in Sections 4.6 and 4.9. 

Exercises 

• Exercise 4.2.4.1: Declare three variables called height, width, and length, 
initialize them with some floating point values, and compute the value 
of the variable volume as the product of the three variable values. 

• Exercise 4.2.4.2: Declare two variables a and b, initialize them with 
floating point numbers. Compute a Pythagorean triple, that is, a value 
for a variable c that the equality a2 + b2 = c2 holds. 

4.2.5 Constants 

Sometimes we would like to include values that never change during a 
program execution. This could be done by a traditional variable, but there 
is a chance that the value gets changed at some point which is not desired. 
Hence, we would like to give such a variable a special meaning, saying that 
its content should stay untouched in any scenario. This is the point in which 
we have to use a constant. Actually, in Python there is no special syntax for 
that. We just use variables, but we give them a special form by a well-defined 
naming convention, that is, using only capital or uppercase letters indicates 
that this variable is a constant, although it might be changed. Since constants 
are just variables (but never change the values), they can be based on any data 
type the standard variables are also based on. The value of a constant should 
not be modifiable, we can just use it in one direction, meaning reading the 
value it contains (see Listing 4.17 for creating constants). 

1 PI  =  3.141592  
2 E  =  2 .7182  
3 HIGHEST_SPEED = 240 

Listing 4.17 Defining constants in Python 

Exercises 

• Exercise 4.2.5.1: Define a constant that contains the number of seconds 
per day. 
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• Exercise 4.2.5.2: Define a constant that stores the free fall acceleration 
on earth as a range interval. 

4.3 Strings and Characters 

Strings are the key data type when we have to deal with textual data, for 
example, to give feedback to users or to analyze textual content for word 
occurrence frequencies or semantic meanings. This does not only hold for 
standard text, but it could also be relevant for source code or DNA strings, 
both of them are based on textual entities composed of letters/characters from 
a given alphabet on its finest granularity level. Hence, text analytics [6] is a 
major application domain in the field of data science. This fact makes strings 
to relevant topics to study and to research. Strings and characters are special 
types of values but on the other hand they can be treated as numeric values as 
well, given the fact that we can map each character to a well-defined number, 
for example, based on a character table like the ASCII table. However, 
working with strings and characters is not as easy as working with numeric 
values, since the standard arithmetic operations (Section 4.1.1) cannot be 
applied simultaneously. Instead, there are many functions and methods that 
support operations on strings and characters. 

In this section, we are first looking into methods to apply meaningful 
operations on strings and characters, however, there seems to be an endless 
list of such methods, too many to mention all of them here (see Section 4.3.1). 
Furthermore, we will have a look into character tables like ASCII and 
explain the order among those characters (Section 4.3.2). User input and the 
validation of user input, in particular with regular expressions is illustrated in 
Section 4.3.3. We also describe how a program should be commented which 
is possible in several ways (Section 4.3.4). 

4.3.1 String methods 

There are various functions and methods (to understand what methods are, 
see Section 4.9.3) that can be applied to transform, modify, analyze, split, 
or reverse strings, just to mention a few. Some methods work on one string 
only, some other methods work on several of them, some just process the 
string by reading it, some others transform one or more strings into one 
or several others. Such a string transformation could be a special kind of 
encoding, for example, used for passwords that should not be stored in 
its textual plain vanilla form in a system. No matter which kind of string 
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problem we look at, there are various ways to get support from built-in Python 
methods. How to create one’s own functions and methods will be explained in 
Sections 4.6 and 4.9.3, respectively. Moreover, we will explain the difference 
between functions and methods, actually at the moment, the outcome does 
not make a difference for us. Apart from string methods, we can also apply 
built-in methods or our own created methods on the major building blocks of 
such strings, namely characters and their internal organization in tables, for 
example, in an ASCII table (Section 4.3.2). 

If only one string is involved, we might be interested in the length of that 
string, the number of lower- and uppercase letters it contains, the positions 
of special characters or substrings in that string, or we might actively change 
the string, for example, exchanging special characters or converting it into 
uppercase letters only or just one uppercase letter at the beginning. There 
are many options to apply functions and methods to strings, Listing 4.18 
illustrates some examples. 

1 o r i g i n a l S t r i n g  =  ’ h e l l o  how  are  you?  ’  
2 

3 numChars = l en ( o r i g i n a l S t r i n g )  
4 newString  =  o r i g i n a l S t r i n g  .  c a p i t a l i z e  ( )  
5 newString  =  o r i g i n a l S t r i n g . encode ( )  
6 t e s t  =  o r i g i n a l S t r i n g  .  i s a s c i i  ( )  

Listing 4.18 String functions and methods if only one string is involved 

If two or more strings are involved (see Listing 4.19), we can apply 
different kinds of functions and methods. 

1 o r i g i n a l S t r i n g  =  ’ h e l l o  how  are  you?  ’  
2 t ex t  =  ’ow  ar  ’  
3 

4 o r i g i n a l S t r i n g  .  f i nd ( t ex t )  
5 o r i g i n a l S t r i n g  . index ( t ex t )  
6 o r i g i n a l S t r i n g . r ep l a c e (  ’ are  you ’  , ’am I ’ ) 

Listing 4.19 String functions and methods applied to more than one string 

Exercises 

• Exercise 4.3.1.1: Given a string ’Good morning everybody’. Find a way 
to reverse the string. 
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• Exercise 4.3.1.2: Given two strings ’hello’ and ’how are you’. Find a 
way to concatenate both strings into one string. 

4.3.2 ASCII code and table 

The American Standard Code for Information Interchange (ASCII) [108] 
introduced a special encoding standard for characters as well as symbols 
that we typically meet during programming tasks. The idea behind ASCII 
is that each character, letter, or symbol is assigned a well-defined natural 
number, hence ASCII characters can be represented in some kind of table 
ordered by these unique numeric identifiers (see Figure 4.1). ASCII allows 
128 characters due to the fact that each character is internally represented 
by a 7-bit binary string (from 0000000 to 1111111), resulting in 27 = 
128 different possibilities for the binary string. There are ways to switch 
between a character and the corresponding numeric value, for example, 
by using the functions ord() and chr(), illustrated in Listing 4.20. Apart 
from ASCII there are some other encoding schemes, one popular one is 
denoted by the term Unicode, supporting many more characters than the 128 
in ASCII. 

Figure 4.1 Characters and symbols with their corresponding numeric identifiers represented 
in the ASCII table. 
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1 cha rac t e r  =  ’ p ’  
2 

3 i d e n t i f i e r  =  ord ( cha rac t e r )  
4 cha rac t e r  =  chr ( i d e n t i f i e r )  
5 i d e n t i f i e r  =  i d e n t i f i e r  +  5  
6 cha rac t e r  =  chr ( i d e n t i f i e r )  #  eva lua t e s  to  ’ u ’  

Listing 4.20 Converting between characters and corresponding numeric identifiers based on 
the ASCII table 

Exercises 

• Exercise 4.3.2.1: What is the numeric value of the character ’M’ in the 
ASCII table? Write code for that. 

• Exercise 4.3.2.2: Given a list of characters myList = [’H’,’e’,’l’,’l’,’o’]. 
Convert this character list into a numeric ASCII value list. Do the same 
with the letters occurring in your own name. 

4.3.3 User input and regular expressions 

In many scenarios we wish to get user input, for example to get feedback 
for a certain task, service, or to evaluate a visualization tool or dashboard. 
In its simplest form this can be done by allowing users to type in textual 
information to give feedback to the developer of such a tool or a service. 
This strategy brings some extra challenges, not only for the users but even 
more from a programming perspective. The textual user inputs can be strings, 
integers, floating point numbers and they might have certain lengths or text 
formats. Actually, this is not a problem at all but we have to react on any 
kind of user inputs to avoid our program from crashing, either directly or 
after a few steps during its executions, for example when a value, based on 
a wrong data type, has to be processed. This process can happen many steps 
later, hence it might become difficult to debug the program and to localize the 
origin of the error. The standard way to allow user inputs could be done by 
using the code in Listing 4.21. The function called input has the goal to output 
the given text in parentheses and to assign the variable on the left-hand side 
with the user input which is completed by pressing the return key. However, 
in a visualization tool, we typically provide more advanced text fields or text 
areas to type in some textual information, like in a mask to fill in personal 
information as it is known from the most popular web pages that need to 
collect this kind of personal information. We can be confronted by at least 
three major input validation concepts that we will explain in the following. 
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1 f eedback  =  input ( ’  Please  prov ide  some  f eedback  :  ’ ) 

Listing 4.21 Allowing user input in textual form 

• Length of the input: Actually, users can enter a quite long textual 
information, that is, consisting of many characters. If we wish to limit 
the number of possible characters, we can validate that by asking for the 
length of a string. The function len() has already been introduced earlier 
(see Section 4.3.1). 

• Content/Data type of the input: An input in this form is typically given 
as a value in the string data type. This means if we expect integers 
or floating point numbers, we have to check first if the given string 
is convertable into such a numeric value. This concept has also been 
explained earlier (see Section 4.2.3). 

• Specific pattern in the input: Finally, we might want to check if a string 
follows a certain pattern or rule. This seems to be more complex than 
the standard length and data type validations but actually, it is not really 
difficult. The powerful idea that comes into play here are so-called 
regular expressions [70, 225]. A regular expression can be understood 
as a string itself, consisting of characters that have a meaning, that 
is, those characters can be used to derive certain well-defined patterns 
in a string. In Python there is a built-in package denoted by re. Such 
regular expressions can be checked for several properties like meta 
characters (Table 4.9), special sequence characters (Table 4.10), or a 
set of characters (Table 4.11), without guaranteeing completeness of the 
tables. 

Table 4.9 Meta characters and their meaning. 
Pattern Meaning Example 
. � �  Any character ’ho..ar..y.u?’ 

Some characters ’[c-t]’ 
* 0 or more ’*n’ 
+ 1 or more ’+l’ 
? 0 or 1 ’?p’ 
{n} n times ’{n}’ 
| Either or ’yes|no’ 
() A group ’(mnp)’ 
∧ Start with ’∧s’ 
$ Ends with ’l$’ 

To apply a regular expression to a given string, we have to know some 
useful functions and methods (see, e.g., Listing 4.22). 
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Table 4.10 Special sequence characters and their meaning. 
Pattern Meaning Example 
\s match where white space is ’\sgd h tt’ 
\S match where no white space is ’\Sgf g tr’ 
\b match if chars at beginning/end ’\bha’ 
\B match where chars are, not at beginning ’\Bhi’ 
\A match if chars at the beginning ’\Ahel’ 
\d match if digits contained ’\dtr6d1f’ 
\D match where no digits are ’\Dt5rt65tr’ 

Table 4.11 Set of characters and their meaning. 
Pattern Meaning Example � � 
b-t any lower case letter b to t ’f’ � � 
01234 any of the digits 0 to 4 ’3’ � � 
bgd any of the given letters b, g, d ’d’ � � 
0-9 any digit between 0 and 9 ’7’ � � ∧bht any letter apart from b, h, t ’x’ � �� � 
0-7 0-5 any 2-digit number between 00 to 75 ’68’ � � 
a-zA-Z any letter between a and Z ’T’ 

1 import  re  
2 

3 i nputSt r ing  =  ’ I l ove programming ’ 
4 matches  =  re .  f i n d a l l (  ’ o ’ , i nputSt r ing )  
5 matches  =  re . s earch (  ’ o ’ , i nputSt r ing )  
6 

7 i nputSt r ing2  =  ’RE352 ’ 
8 va l i d a t e  =  re . match ( [A-Z ] { 1 , 2 } [ 0 - 9 ] { 3 } ,  i nputSt r ing2 )  

Listing 4.22 Examples of functions and methods for applying regular expressions to strings 

Exercises 

• Exercise 4.3.3.1: Write a regular expression for strings that contain 
exactly one uppercase letter and end with three digits. 

• Exercise 4.3.3.2: For a password validation check, we need a string of at 
least eight characters, and that starts with an uppercase letter and at least 
one digit. Write a regular expression for that. 

4.3.4 Comments 

The documentation in a program [227] is very important to let the developer 
better understand the functionality in certain parts in the code. This is, in 
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particular, useful if we have to inspect the code many weeks later and to 
quickly get an impression about what is being implemented in a certain piece 
of code. Due to this fact, it is a good advice to keep the documentation in 
the form of code comments short but still informative to explain the effects 
of a code and why it has been implemented in exactly this way. A text line 
that starts with a # sign will be ignored by the compiler or interpreter, but 
when reading the code, it is always there (see Listing 4.23 for an example of 
a comment). Comments can be placed everywhere in a code, it may be noted 
that if they are placed at the end of a code line, the rest after the # will be 
ignored. 

1 # Writing comments i s not d i f f i c u l t 
2 pr in t ( ’ This i s a commented program . ’ ) 
3 

4 value  =  25  #  A  comment  a f t e r  a  code  l i n e  

Listing 4.23 A comment in a Python code 

Comments are not limited to one line only. They can span several lines 
and many of them can be made at different code places (see Listing 4.24), 
also with so-called triple quotes indicating a comment over several lines. 

1 #  Hel lo  
2 # These  comments are placed 
3 #  in  s e v e r a l  l i n e s  
4 pr in t ( ’ This  seems  to  work  ’ ) 
5 

6 """  
7 Hel lo  
8 These  comments are placed 
9 in  s e v e r a l  l i n e s  

10 """  

Listing 4.24 Several comments spread over several lines by using triple quotes 

Exercises 

• Exercise 4.3.4.1: Write a one-line comment in Python code. 
• Exercise 4.3.4.2: Write a multi-line comment in Python code. 

4.4 Conditionals and Exceptions 

In some situations we wish to branch in the program, meaning there are 
two ways to follow, given the fact that a condition can be evaluated in two 
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directions: Either true or false (Sections 4.1.2 and 4.1.3). This leads to a 
binary kind of control flow that can handle one of both ways, depending on 
the outcome of a formerly evaluated conditional expression. In some cases, 
we even have more than two options which might be modeled by several 
conditionals, but, in this case, we might better take the option of allowing 
several cases, handling one case after the other until one matching is found, 
or in the worst scenario, no case is found, asking to execute a default option. 
In some situations, it is even a good idea to handle an exception, meaning 
there is a strange, unwanted, or unexpected evaluation that would otherwise 
let the program crash if not handled by an exception. 

In this section, we will start by explaining the mighty concept of 
conditionals allowing a branching in the control flow (Section 4.4.1). We 
will also take a look at a so-called pattern matching option that allows 
several cases to be handled, but just one or a default one can be executed 
(Section 4.4.2). Finally, we describe exceptions and how they can be checked, 
even be treated to avoid the crashing of the program (Section 4.4.3). 

4.4.1 If and else 

In a so-called if-statement [113], we can check whether a condition holds 
or not. The if-statement evaluates some kind of logical/Boolean or relational 
expression (see Sections 4.1.2 and 4.1.3) to get a True or False value with 
which it is decided what to do, that is, if the condition allows a following 
code to be executed (see Listing 4.25). In this example the indented code 
after the if-statement is only executed in case the variable value contains a 
number greater than 0.0 which evaluates to True in this special example. It 
may be noted that there can be many more code lines after an if-statement, 
all of the indented ones belong to the body of the if-statement and will be 
executed one after the other. In Python we use this indentation principle, in 
other programming languages parentheses might be used. 

1 value  =  0 .05  
2 

3 i f  value  >  0 . 0 :  
4 pr in t ( ’The  value  i s  g r e a t e r  than  0 . 0 .  ’ ) 

Listing 4.25 An if-condition can be used to allow code to be executed or not 

By just using an if-statement, we do not have a real branching in the 
control flow, for this we need an else branch, meaning there is always an 
option, no matter how the conditional expression is evaluated, True or False 
(see Listing 4.26). 
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1 value  =  - 0 .05  
2 

3 i f  value  >  0 . 0 :  
4 pr in t ( ’The  value  i s  g r e a t e r  than  0 . 0 .  ’ ) 
5 e l s e  : 
6 pr in t ( ’The  value  i s  sma l l e r  than  or  equal  to  0 . 0 .  ’ ) 

Listing 4.26 The else part of a conditional can be used as an alternative in cases the 
if-statement branch is not executed 

In Python there is even another alternative: the elif option. This one 
gives a chance to proceed as another alternative in cases the if-statement is 
evaluated to False (see Listing 4.27). 

1 value  =  0 .00  
2 

3 i f  value  >  0 . 0 :  
4 pr in t ( ’The  value  i s  g r e a t e r  than  0 . 0 . )  
5 e l i f  value  ==  0 . 0 :  
6 pr in t (  ’The  value  i s  equal  to  0 . 0 .  ’ )  
7 e l s e  :  
8 pr in t (  ’The  value  i s  sma l l e r  than  0 . 0 .  ’ )  

Listing 4.27 The elif option can be used as an alternative in cases the if-statement is not 
followed 

The keyword ’pass’ can even be used in cases in which there are no 
statements after an if-branch. The pass keyword replaces the otherwise empty 
code block, however, this happens only in rare cases. 

Exercises 

• Exercise 4.4.1.1: Write a program to test whether a natural number is 
odd or even. 

• Exercise 4.4.1.2: Given a variable containing a string. Test whether this 
string contains uppercase letters and more than 10 characters. 

4.4.2 Pattern matching 

In Python there is no explicit switch statement as in other programming 
languages but instead, there is some kind of pattern matching strategy that 
tries to match pattern by pattern until one is found, or a default case is reached, 
in case no pattern matches from the given ones. The default case is indicated 
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by an underscore pattern. This pattern matching strategy creates a branching 
effect that allows more than two or three possibilities (if, elif, else) by using 
a multitude of patterns (see Listing 4.28). 

1 value  =  ’ Mercedes  ’  
2 

3 match  value  :  
4 case  ’ Audi  ’  : 
5 pr in t ( ’Your car i s an Audi . ’ ) 
6 case  ’ Peugeot  ’  : 
7 pr in t ( ’Your  car  i s  a  Peugeot . ’ ) 
8 case  ’ Mercedes  ’  : 
9 pr in t ( ’Your  car  i s  a  Mercedes  . ’ ) 

10 case  _:  
11 pr in t ( ’The brand o f your car i s unknown . ’ ) 

Listing 4.28 A multitude of options are possible by using a match case pattern 

Exercises 

• Exercise 4.4.2.1: Write code for a pattern matching that checks different 
grades and outputs whether the grade is very good, good, medium, bad, 
or very bad. 

• Exercise 4.4.2.2: Write code for a pattern matching that checks different 
sports activities and outputs the number of players required. 

4.4.3 Exceptions 

A syntax error [253] can occur if a piece of code is not properly defined 
to make it understandable for the compiler or interpreter. This kind of error 
happens before the actual program execution, that is, before runtime, already 
in the program translation phase. A semantic error [182] is an error that is not 
detected by the compiler but rather by the programmers themselves. Semantic 
errors create unwanted effects, those that do not produce the functionality the 
programmers desired. A third kind of error is an exception. A program might 
be syntactically and semantically correct, but there might be some places 
in which the code is not running properly, but just for a few ’exceptional’ 
instances of a problem, hence those are so-called exceptions. Unlike syntactic 
or semantic errors, exceptions can be handled (in case one knows them). If 
they are not handled they can result in errors and the program might crash 
(see Listing 4.29 for an exception and Listing 4.30 for handling it). Apart 
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from division-by-zero errors, there are various kinds of exceptions, typically 
indicated in error messages given by the compiler in cases the programs crash 
due to some unforeseen reasons. Python supports some built-in exceptions 
with clear exception information to provide some feedback about the type of 
error, however the programmers can also create their own exceptions. 

1 value  =  0  
2 d iv i s i onVa lue  =  6/ value  

Listing 4.29 An error caused by a division by zero 

1 value  =  0  
2 

3 t ry  : 
4 d iv i s i onVa lue  =  6/ value  
5 break  
6 except  ZeroDiv i s i onError  :  
7 pr in t ( ’ D iv i s i on  by  zero  i s  not  al lowed  ’ ) 

Listing 4.30 Handling a division by zero error 

To handle an exception we enclose the critical program code into 
so-called try-except statements. First, the try block is executed. If there is 
no exception, the try statement is processed, and the except part is skipped. 
If there is an exception, the rest of the code block after the try is skipped 
and the except part is executed, in case the name of the exception matches 
the real exception. Finally, the code of the try-except part is executed. This 
means, although there was some type of error in the program, the program 
will not crash, instead it will handle the exception, here with a printed string. 

Exercises 

• Exercise 4.4.3.1: After a user input we would like to proceed with the 
user-defined number, but unfortunately, this number is a string. Write 
code to handle such a conversion error. 

• Exercise 4.4.3.2: In the example Listing 4.30 extend the code of the 
except part to provide a value for the divisionValue variable even if it 
generates a division-by-zero error. 

4.5 Loops 

To avoid implementing the same kind of functionality all the time, only 
differing in the size of an argument, for example, we can make use of 
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so-called loops [159]. Those are simple constructs that repeat instructions 
until a certain well-defined termination condition is met. There are two 
types of loops: definite ones and indefinite ones. This means, for the first 
type of loops we know how many iterations are made until the process 
terminates, for the second type of loops we have no idea how many iterations 
have to be made until the process terminates. The termination is decided 
during the runtime of the loop and has to be computed in some kind 
of dynamic termination condition. For this reason (and maybe for some 
others as well) Python supports for-loops and while-loops, both of them, 
contain a termination condition, however it is given in two different ways. 
Loops can even run endlessly, in case the termination condition is never 
met. Moreover, loops can be implemented inside loops and the loop types 
can even be mixed, that is, for-loops can be contained in while-loops and 
vice versa. 

In this section, we start by introducing the principle of definite iteration 
and focus on the so-called for-loops (Section 4.5.1). Apart from definite 
iterations we look into indefinite iterations, in this case we describe the 
concept of while-loops and explain termination conditions (Section 4.5.2). 
Finally, we illustrate how loops can be nested, meaning there is actually no 
limit to the number of loops contained in each other, but it may be noted that 
an unclever nesting can cause high runtimes (Section 4.5.3). 

4.5.1 Definite iteration 

The for-loop is used to process a list or set of elements. This list or set 
can be based not only on a real list but also on a string (which is actually 
a list of characters) or on a range, for example as an interval of natural 
numbers (which again is some kind of list). The order of the list (or sequence) 
is important to start somewhere and end somewhere during the processing 
strategy. In programming terms we say that we iterate over the sequence, 
hence we know exactly how many steps are needed to process all elements, 
which give this iteration strategy its name, the definite iteration. The first line 
of a for-loop just describes which elements are involved in an iteration and 
in which order, the rest of the for-loop, that is, its body describes what to 
do exactly with each of the elements, one-by-one. Listing 4.31 illustrates an 
example for such a for-loop iterating over a list of names and sums up the 
numbers of letters contained in each name string. 
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1 names = [ ’Marco ’ , ’ Michael  ’  , ’ Heiko  ’  , ’ John  ’  ] 
2 numOfLetters  =  0  
3 

4 f o r  name in  names : 
5 numOfLetters  +=  l en  (name) 
6 

7 pr in t  ( numOfLetters )  

Listing 4.31 A for-loop illustrating a definite iteration over a list of names 

There are even break and continue statements to stop the iteration if a 
certain element is found or has a certain property. Moreover, we do not have 
to stop it, but we might skip it instead and continue the iteration after it, 
hence the corresponding element is omitted in the process (see Listings 4.32 
and 4.33). 

1 names = [ ’Marco ’ , ’ Michael  ’ , ’ Heiko  ’ , ’ John  ’ ] 
2 numOfLetters  =  0  
3 

4 f o r  name in  names : 
5 i f  name == ’  Michael  ’  : 
6 break  
7 numOfLetters  +=  l en  (name) 
8 

9 pr in t  ( numOfLetters )  

Listing 4.32 A for-loop with a break statement 

1 names = [ ’Marco ’ , ’ Michael  ’ , ’ Heiko  ’ , ’ John  ’ ] 
2 numOfLetters  =  0  
3 

4 f o r  name in  names : 
5 i f  name == ’ Heiko  ’  : 
6 cont inue  
7 numOfLetters  +=  l en  (name) 
8 

9 pr in t  ( numOfLetters )  

Listing 4.33 A for-loop with a continue statement 

Apart from using a list or sequence of elements we can operate on a 
certain interval with natural numbers. The easiest way to get that done is 
by applying the range() function. This creates a sequence of numbers and 
then the for-loop iterates over this sequence (see Listing 4.34). Actually, 
the iteration can increment by one, starting from 0, between left and right 
interval borders, or even increment by a given value, typically specified as 
a third parameter. There is even an else statement which can be given after 
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the for-loop has finished. Moreover, a pass statement can be used in cases the 
body of a for-loop is empty for some reason. 

1 n =  5 ;  
2 

3 f o r  i in  range (10) :  
4 n+=i **2  
5 

6 f o r  i in  range  (7  , 17 )  :  
7 n-= i 
8 

9 f o r  i in  range  (10  , 20  , 4 )  :  
10 n+=i 

Listing 4.34 A for-loop defined on the range()-function 

Exercises 

• Exercise 4.5.1.1: Implement a for-loop that sums up the natural numbers 
100from 1 to 100, that is, i.i=1 

• Exercise 4.5.1.2: Implement a for-loop that computes the factorial of a 
nnatural number n ∈ N given as n! :=  i for a value of n = 20.i=1 

4.5.2 Indefinite iteration 

In contrast to the for-loop which is typically used for a definite iteration, the 
while-loop is the most frequent used concept for indefinite iteration. Actually, 
in cases in which it is unclear how long or how often an iteration has to 
run, a while-loop is suited better since it allows to start the loop without 
clearly specifying how long or how often it has to run. Each for-loop can 
be transformed into a corresponding while-loop by just using the number 
of iterations in the for-loop as a break up criterion in the while-loop. The 
other direction, transforming a while-loop into a for-loop, is more difficult, 
sometimes even impossible. The reason is that we cannot just use the 
conditional test expression in a while-loop as a sequence to iterate over. 
The condition itself might be dependent on side effects that we cannot easily 
understand when starting the loop. However, even if it is possible, we should 
follow the principle of using for-loops for definite iterations and while-loops 
for indefinite iterations. Listing 4.35 illustrates an example for a while-loop. 
The body of the while-loop is executed as long as the test expression in 
the first line is evaluated to true; otherwise, the loop stops and the control 
flow proceeds regularly after the last statement in the loop’s body. The 
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test expression is only checked once at the beginning, after each iteration, 
independent of the fact whether or not the test expression might change 
during executing the statements in the body of the while-loop. 

1 value  =  100  
2 

3 whi le  ( va lue  %  3  !=  0) :  
4 value  =  value /2  
5 

6 pr in t  ( va lue )  

Listing 4.35 A while-loop iterates in an indefinite way 

Similar to the for-loop, also the while-loop allows break-statements and 
an else option at the end. 

Exercises 

• Exercise 4.5.2.1: Implement a while-loop that runs as long as the term 
1.0n := n + is smaller than a given number. n 

• Exercise 4.5.2.2: Implement a while-loop that does the same as the 
for-loop in Listing 4.31. 

4.5.3 Nested loops 

The programming world would be boring if it was not allowed to create more 
complex loops, for example in a nested fashion. This means loops can be 
contained inside other loops, even as a mixture of while- and for-loops (see 
Listing 4.36). 

1 f o r  i in  range (10) :  
2 whi le  i * i <50: 
3 i = i+1  
4 pr in t  (  i * i  )  

Listing 4.36 An example for nesting loops 

Exercises 

• Exercise 4.5.3.1: Implement a for-loop that processes a list of strings, 
element by element, and that processes each string character by 
character to count the number of uppercase letters. 
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• Exercise 4.5.3.2: Implement a three-dimensional list containing natural 
numbers. Use three nested for-loops to sum up all values in the 3D list. 

4.6 Functions 

Functions are the major building blocks of programming since they allow 
to encapsulate subroutines into code blocks. A subroutine is understood as 
a small algorithm that works with input and output parameters, computing 
something useful. The whole program is full of such subroutines, being 
responsible for the functionalities a software can have. Using functions makes 
coding much easier, with less text, and even more maintainable. For example, 
if the functionality of a subroutine has to be changed without using functions 
we have to find all locations in the code and adapt the subroutine. This is 
a tedious, time-consuming, and error-prone task, also with high chances to 
include inconsistencies in the code. For this reason, functions can be used to 
put such subroutines at one place. Each time we have to adapt something in 
the subroutine we only have to do this once, in the corresponding function, 
which accelerates the adaptation process and reduces the chance to include 
inconsistencies that would lead to the program to crash. 

In this section, we describe the concept of creating one’s own functions 
(Section 4.6.1) with and without return parameters and with an arbitrary 
number of such parameters, also with different data types. Section 4.6.2 
illustrates how functions can be called, taking into account their parameter 
lists and data types as well. Apart from one, even several functions can be 
integrated, in some kind of nested structure, a strategy that is illustrated in 
Section 4.6.3. Moreover, the variables inside a function are typically used 
in a local way, but for some reason, we could even define them as global 
variables (Section 4.6.4). 

4.6.1 Defining a function 

Before using such self-built functions, we have to find a way to define them. 
This means we have to specify a name, the input and output parameters, and 
the computation routine itself in the body of the function. A computation 
routine can be as simple as finding a maximum value among a list of 
numeric values for projecting high-dimensional data to a lower-dimensional 
space [235]. No matter which functionality we create, the definition of a 
function always follows the same principle, depending on the problem itself, 
it can be more or less complex. The most important thing when defining a 
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function is to know the Python keyword for that which is given by def, telling 
us that we are going to define a function. Listing 4.37 shows an example 
for a simple function that is named sum and gets 3 input parameters x, y, 
and z. Those are summed up and the result is returned as the only output 
parameter. It may be noted that a function can have as many input and output 
parameters as we like (separated by commas), also no inputs and no outputs 
are possible. Returning a result is done by the return statement (in the last line 
of a function definition). This means the function is completely processed and 
we will return in the control flow to the place where the function was called 
and process the next statements, but now we know the result of a computation 
(a simple or complex one) and can use it in the program. 

1 de f  sum(x , y , z ) :  
2 re turn  x+y+z 

Listing 4.37 A simple function definition in Python 

Exercises 

• Exercise 4.6.1.1: Define a function that computes the factorial of n, that 
is, the product of all natural numbers from 1 to n. 

• Exercise 4.6.1.2: Define a function that takes two lists with numeric 
values as arguments and adds them element by element, returning a new 
list containing the sums of the elements. 

4.6.2 Calling a function 

Defining a function is one side of the problem, calling it is the other. However, 
calling a function is not difficult, in case, we know its name and its input 
and output parameters. Apart from the number of parameters we should also 
know which data types they are based on to make the call a reliable one, 
that is, avoid runtime errors during the program execution. The syntactic 
errors will typically be found by the compiler before the execution but 
still even if a program is syntactically correct there is no guarantee that 
it is also semantically correct. For example, an originally intended float 
data type might be mistaken for an integer data type. The program itself 
might be syntactically correct, for example adding two integers happens in a 
similar way as adding two floating point numbers, but the precision after the 
execution is a different one. Such a problem should be detected when calling 
the function, even if the definition might be syntactically correct. Calling a 
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function happens by its name and the parameter list while the parameters are 
replaced by real values in the call, to allow the function to be executed and 
to compute a result. Listing 4.38 gives an example showing how to call a 
function, in this case the function sum on three arguments from Listing 4.37. 
The three values are given as variables and build the input parameters of the 
sum function. Since the function is already properly defined, it is known what 
to do with these values while the returned value from the function is finally 
assigned to another variable called result which can be seen in the main code. 

1 value1  =  2 .3  
2 value2  =  4 .5  
3 value3  =  1 .3  
4 

5 r e s u l t  =  sum( value1  ,  value2  ,  value3 )  

Listing 4.38 Calling a function happens by using its name and its parameter list 

In some cases, where we call a function with a wrong parameter list, 
for example, the input parameters we get an error message. Moreover, if 
the number of output parameters does not match with the assignment to a 
variable or several variables, this will also cause an error. Also a wrong order 
of the parameters can cause an error, in case the data types do not match, 
however, if the data types match for some reason, we might have the problem 
of wrong value assignments. This will not be detected by the compiler but 
we will obtain a wrong result that is caused by a semantics error, that is, a 
semantically wrong assignment. 

There are even options in Python to call a function when the number of 
the input arguments might be unknown at the moment of the function call. 
For example, if a list of values is given as input parameters we can use the * 
pattern to let the function expect as many values as are given in the current 
situation of the function call (see Listing 4.39). 

1 de f  bestStudent (* s tudents ) :  
2 re turn ( "The  cu r r en t l y  best  student  i s  "  +  s tudents  [ 0 ] )  
3 

4 bestStudent ( "Michael "  , "Marco" , " Ingo"  , "David" ) 

Listing 4.39 Using a star to indicate an unknown number of arguments at the moment of a 
function call 

It is even possible to explicitly assign the used variables in a function 
in the function call, making the ordering of the arguments irrelevant, but 
negatively we have to know the keys that are needed to properly make the 
key-argument assignments (Listing 4.40). 
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1 de f  bestStudent ( student4  ,  student3  ,  student2  ,  student1 )  :  
2 re turn ( "The  cu r r en t l y  best  student  i s  "  +  student1 )  
3 

4 bestStudent ( student1  =  "Michael "  ,  student2  =  "Marco" , 
student3  =  " Ingo"  ,  student4  =  "David" ) 

Listing 4.40 Using key-value pairs at a function call 

Exercises 

• Exercise 4.6.2.1: Call the function in Listing 4.37 to compute the sum of 
the values for each parameter by varying the value between 0 and 100. 
Hint: Use a nested for-loop. 

• Exercise 4.6.2.2: Extend the function from Listing 4.37 to allow an 
unknown number of numeric arguments. Call the function by varying 
the number of the arguments. 

4.6.3 Nesting of functions 

Defining and calling a function can also be based on a multitude of other 
functions, in some kind of nested structure. For example, to compute a 
clustering from a list of two-dimensional points it might be important to 
compute the distance of pairs of those points, to create and to validate the 
computed clustering. This distance function can be implemented inside the 
clustering function, but it would be better to call the distance function inside 
the clustering function. Maybe the distance function, which is a very basic 
computation, has to be applied in several other functions, apart from only 
the one for the clustering computation. This makes the distance function 
more general in some way, hence it is a good strategy to create some kind 
of function set whose elements can be called inside each other whenever 
required. An example for simple nested functions is given in Listing 4.41. 

1 de f  sum(x , y , z ) :  
2 re turn  x+y+z 
3 

4 de f  average (x , y , z ) :  
5 re turn  sum(x , y , z ) /3  
6 

7 average  ( 4 . 3  , 2 . 7  , 8 . 9 )  

Listing 4.41 Nesting functions can be a powerful coding strategy to avoid reimplementing 
the same basic functions again and again many times 
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Exercises 

• Exercise 4.6.3.1: Define a function for computing the average length of 
strings in a given string list. Use the function len() to compute the length 
of each string. 

• Exercise 4.6.3.2: Define a function to compute the ratio between 
maximum and minimum of a given list of floating point numbers. Use 
the functions min and max. 

4.6.4 Local and global variables 

Typically, in a function in Python we use local variables. The reason is 
that they cannot be accessed and modified from the outside of the function, 
a programming concept that is known under the term encapsulation. This 
mighty principle is important to avoid ugly side effects that would allow to 
change values inside a function from anywhere, leading to problems when 
maintaining the code or detecting errors. But in some rare situations it might 
make sense to define a variable inside a function as a global variable, that is, 
one that is accessible from everywhere, can even be modified, and flows into 
the computation inside the function. But this strategy should be taken with 
care since it can create unwanted side effects. Listing 4.42 illustrates how to 
define a variable inside a function as global. This definition uses the value of 
the global variable nFact from the main program inside the function which 
will not create the right result for the factorial of n. This error can happen if 
we accidentally used the same variable name somewhere in the program and 
now the value is used in the function without being aware of it. 

1 nFact  =  5  
2 

3 de f  nFac to r i a l  (n)  :  
4 g l oba l  nFact  
5 

6 f o r  i in  range  (1 , n+1) : 
7 nFact  =  nFact* i  
8 re turn  nFact  

Listing 4.42 A global variable inside a function definition 

Exercises 

• Exercise 4.6.4.1: Define a function that computes the product of 3 
natural numbers. Use a global variable to store the result of the 
computation. 
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• Exercise 4.6.4.2: Call the function in Listing 4.42 without initializing 
the value of the global variable nFact in the main program. What is the 
effect? 

4.7 More Complex Functions 

The functions we discussed so far are quite simple, that is, plain vanilla 
function definitions and calls. There are other options in Python to create 
functions, for example functions calling themselves until a termination 
condition is reached. This strategy is known as recursion [234] since a 
function is recursively defined on itself, starting with a problem that is solved 
by recursively reducing the size of the problem until it is small enough to 
be trivial, that is, to lead to a termination. The input and output parameters 
of functions can themselves be functions bringing us to the higher-order 
functions. Functions do not have to be named, they can even be defined and 
called anonymously, in so-called lambda expressions. This allows to use a 
function ’on-the-fly’ by defining and calling it exactly at the place in the code 
where it is needed. 

In this section, we are going to explain more complex functions by 
starting with recursion and tail recursion (Section 4.7.1), that is, a kind of 
recursion that reduces the memory consumption by more or less directly 
evaluating the expression that is built during the recursive process. The 
next recursive call is started when the expression is computed which avoids 
creating long recursion chains or trees. Functions with functions as input and 
output parameters are described in Section 4.7.2 as higher-order functions. 
Finally, we discuss the usefulness of anonymous functions, so-called lambda 
expressions in Section 4.7.3. 

4.7.1 Recursion versus tail recursion 

Recursion is a mighty and elegant concept that is based on the idea of 
functions calling themselves. A function is typically used to solve some kind 
of algorithmic problem, a simple or complex one. In some scenarios the 
situation is that simple that we just create a ’traditional’ function and provide 
the result in one or a few well-defined steps. An example would be a function 
for computing the maximum of two given natural numbers, for which we do 
not need recursion. In cases in which the problem is quite hard but can be 
solved by reducing the hard problem to a little bit weaker one we are in a 
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situation in which recursion might make sense. The idea behind this concept 
is that the problem can be made weaker and weaker (like using loops) until a 
basic case is reached for which we know the answer. Typically, this process 
generates a chain or tree of executions that have to be handled either during 
the recursion or after the recursion has terminated. In this section we look into 
both perspectives, the first one sometimes bringing problems with memory 
consumption since all of the executions might cause values that have to be 
stored somewhere until we reach the stage of putting everything together to 
obtain the result. Listing 4.43 illustrates an example of a traditional recursive 
function for computing the factorial of a natural number n. Be careful with 
the valid numbers that can be used as the input values for this function. 
If a negative number is given as input the result will always be 1 which 
is mathematically not correct, that is, undefined. A similar aspect holds for 
floating point numbers. Another big issue with recursion, apart from memory 
consumption, can be the fact that the termination condition is never reached, 
ending in a never-ending recursive call. 

1 de f  n f a c t o r i a l (n) :  
2 i f  (n >  0) :  
3 re turn  n* n f a c t o r i a l (n - 1 )  
4 e l s e  : 
5 re turn  1 

Listing 4.43 A recursive function for computing the factorial of a natural number n 

The recursive function for the factorial of n generates a chained 
expression since n! :=  n · (n− 1) · (n− 2) · . . . · 3 · 2 · 1. For longer recursive 
calls this could lead to a high memory consumption. However, apart from a 
chain shape the recursive call could create some kind of tree-like shape, in 
the example in Listing 4.44 a so-called binary tree since there are always two 
branches in the recursive call. This means the recursion tree for this function 
has some kind of exponential growing. The function we are talking about 
here is the so-called Fibonacci function [112] that is mathematically given in 
Equation 4.1. 

⎧   ffib(n− 1) + ffib(n− 2) if n ≥ 2 
ffib(n) :=  1 if n = 1  (4.1) ⎩ 

0 if n = 0  
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1 de f  f i b  (n)  :  
2 i f  n ==  0 :  
3 re turn  0 
4 e l i f  n ==  1 :  
5 re turn  1 
6 e l s e  
7 re turn  f i b  (n - 1 )  +  f i b  (n - 2 )  

Listing 4.44 The Fibonacci numbers can be computed in a recursive way generating some 
kind of tree structure for the recursive calls 

An even more fascinating example (Equation 4.2) for a recursive function 
is the so-called Ackermann function [175]. This function is mathematically 
defined as 

⎧   n + 1  if m = 0  
Ack(m, n) :=  Ack(m − 1, 1) if m >  0, n  = 0  (4.2) ⎩ 

Ack(m − 1, Ack(m, n − 1)) if m >  0, n  >  0 

The Ackermann function which got its name after Wilhelm Ackermann is 
said to be one of its simplest examples of a function that is total computable 
and not primitive recursive as well [188]. From a programming perspective 
we can implement the function as in Listing 4.45. 

1 de f  acker (m, n) :  
2 i f  m ==  0 :  
3 re turn  n+1 
4 e l i f  m > 0  and n == 0 :  
5 re turn  acker (m-1 ,  1)  
6 e l s e  : 
7 re turn  acker (m-1 ,  acker (m,  n - 1 ) )  

Listing 4.45 A recursive implementation in Python for the Ackermann function 

Not only the memory consumption but also the runtime of such recursive 
functions can be terribly high which makes them unusable in its ’traditional’ 
implementation. This can be seen in the example of the Fibonacci numbers, 
but it is even more visible if we run the Ackermann function example. One 
problem with the recursion can be that the execution chain or tree gets really 
large, another problem can be that many calls get repeatedly computed again 
and again although the result is already known. These two problems can be 
solved in some cases if we use an iterative version of the recursion, sometimes 
also called tail recursion (or iterative recursion, repetitive recursion). The 
idea behind tail recursion is that the result of intermediate subexpressions 
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is already computed before the next recursion step is done. This reduces 
the required memory a lot and as well the chance to recompute the same 
expressions all the time, that is, memory and time can be saved at the same 
time with this simple idea. Listing 4.46 gives an example of a tail recursive 
function for the Fibonacci numbers. 

1 de f  f i b (n ,  a ,  b) :  
2 i f  n <=  1 :  
3 re turn  a + b  
4 e l s e  : 
5 re turn  f i b (n - 1 ,  b+a ,  a )  
6 

7 de f  t a i l r e c u r s i v e f i b  (n) :  
8 re turn  f i b (n - 1  , 1  , 0 )  
9 

10 pr in t ( t a i l r e c u r s i v e f i b  (10) )  

Listing 4.46 A tail recursive function for the Fibonacci numbers 

The variables a and b in the listing are responsible for the intermediate 
computations, hence the next recursion step always needs these intermediate 
results to proceed. This reduces the memory consumption. 

Exercises 

• Exercise 4.7.1.1: Evaluate the Ackermann function for (1,1), (2,2), and 
(3,3). What are the results? Do you run into challenges when getting 
those results? 

• Exercise 4.7.1.2: Define a tail recursive function for reversing a list of 
natural numbers. 

4.7.2 Higher-order functions 

A function is called a higher-order function if its input or output parameters 
are functions as well. Actually, such higher-order functions are treated 
very similarly to the standard functions apart from the fact that they can 
operate on other functions as well. Listing 4.47 gives an example of such 
a function creating another function inside its function body and returning 
this newly created function. Here the idea is to create a function that allows 
to multiply two numbers while one of the numbers is given by the function 
itself and the other one can be given as an argument in the newly created 
function. 
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1 de f  makeMult ip l i er ( x ) :  
2 de f  mu l t i p l i e r  ( y )  :  
3 re turn  x*y  
4 re turn  mu l t i p l i e r  
5 

6 multiplyBy50  =  makeMult ip l i er (50)  
7 

8 pr in t ( multiplyBy50 (20) )  #  r e s u l t  =  1000  

Listing 4.47 An example of a simple higher-order function returning a function 

Exercises 

• Exercise 4.7.2.1: Define a higher-order function that creates a function 
for adding 3 floating point numbers while one of the numbers is fixed in 
the created function that is returned. 

• Exercise 4.7.2.2: Define a higher-order function that returns two 
functions, one for adding and one for multiplying the two given numbers 
similar to the example in Listing 4.47. 

4.7.3 Lambda expressions 

In some situations, it is a good idea to use so-called anonymous functions. 
Those can be implemented in some kind of on-the-fly style due to their typical 
short nameless statements. They can be regarded as a programming style 
coming quickly to the point without first thinking about a name and a return 
statement, hence being a quicker way to create functions. To do this, so-called 
lambda expressions are used that can be added inside other expressions. 
Listing 4.48 illustrates some examples for using lambda expressions. Such 
lambda expressions or lambda functions can have any number of parameters. 
However, they are just small code pieces allowing one expression. 

1 y = lambda x : x * 4  
2 pr in t  ( y (3 ) )  
3 

4 z = lambda x , y : x**2  + 2*x*y  - 4*x  + 3  
5 pr in t ( z ( 3 . 4 ,  5 . 1 ) )  

Listing 4.48 Lambda expressions can be used as some kind of anonymous functions 

The good thing with lambda expressions comes from the fact that they 
can even be included in other functions, like the example we have shown in 
Section 4.7.2 on higher-order functions. Here we could modify the example 
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in Listing 4.47 to integrate an anonymous lambda function instead of a named 
function with a return value (see Listing 4.49). 

1 de f  makeMult ip l i er ( x ) :  
2 re turn  lambda  y  :  y * x  
3 

4 multiplyBy50  =  makeMult ip l i er (50)  
5 

6 pr in t ( multiplyBy50 (20) )  #  r e s u l t  =  1000  

Listing 4.49 A lambda expression inside another higher-order function 

Exercises 

• Exercise 4.7.3.1: Define an anonymous function for multiplying 3 
numbers by using a lambda expression. 

• Exercise 4.7.3.2: Define an anonymous function for checking a given 
input string on containing exactly 3 digits and 2 uppercase letters. 

4.8 Reading and Writing Data 

Not only for visualization tools [1, 49, 65, 154], it is also important to be able 
to read and write data. Also, for general applications in data science [235], 
the data itself is the major ingredient. It can come in a multitude of formats 
like comma-separated values for tabular/multivariate data, a Newick format 
for hierarchical data, or a matrix-like format for graph and network data, 
just to mention a few. Reading and parsing the data typically depends on the 
given data format, being even more complex if the data is spread over several 
data files. Moreover, the place from which we have to read the data makes a 
difference for a visualization tool’s data reading strategies, for example the 
data could be accessible on a local machine or it might be located on a server 
accessible via a URL. Even more, the data could be given as text or image 
files or it could be stored in a database. Also, the data could be static or 
dynamically changing, and again the dynamics of the data could be given as 
a static data source but in the most challenging form it could be given as a 
real-time dataset that is updated from time to time, in different granularity 
levels ranging from seconds, to minutes, to hours, to days, or even years and 
decades. If an analysis and visualization is required on the finest granularity it 
can be quite hard to keep up with the incoming data, hence apart from loading 
and reading the whole dataset, in such a scenario only some kind of data 
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sampling is done, reading and processing the data only if this is necessary, 
but this again brings into play other challenges. 

In this section, we are going to first describe user input as a way to 
communicate textual information to a system. This ’user data’ can then 
be used as a dialogue between the users and the system or it might be 
used to analyze user feedback about a system (Section 4.8.1). Directly 
reading from a file, either textual or binary data is important to get real 
data into a visualization tool, however, the data can come in a multitude 
of types and formats that have to be taken into account during reading 
and parsing it (Section 4.8.2). In some scenarios we might wish to write 
data to a data file, for example after a data exploration process when 
storing the relevant information (Section 4.8.3). Sometimes the data to be 
explored is stored on a local data source but in many more situations 
we can access the data from a server, online, that is, as a web-based 
data reading approach, also beneficial for real-time data that is regularly 
updated on a server and allows an up-to-date state of the visualization tool 
(Section 4.8.4). 

4.8.1 User input 

Allowing users to input information can be important, for example to ask 
for login or personal details as well as a password. This simple string-based 
data is handled by an in-built function given as input(). This function takes as 
argument a string and waits until a user has typed in a text and has pressed the 
enter key. Listing 4.50 gives an example for code asking someone for filling 
in his or her name and then assigning this name to a variable. 

1 name = input ( " Please  input  your  name :  " ) 

Listing 4.50 Asking users to input a name that is assigned to a variable 

One issue with the input function is the fact that Python always expects 
the data type String from the input. If we were asking for numeric inputs 
like integers or floating point numbers we are not completely lost, but 
we have to convert the string into the corresponding number first (see 
Listing 4.51). 

1 t ex t  =  input ( " Please  input  the  exact  temperature :  " ) 
2 temperature  =  f l o a t ( t ext )  

Listing 4.51 Converting an input string into a numeric value 
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Exercises 

• Exercise 4.8.1.1: Write Python code to ask users about their hobbies and 
store those hobbies in a list of strings. 

• Exercise 4.8.1.2: Write a function that asks a user about an integer 
number n and then computes the factorial of n. Can you also write this 
function as an anonymous lambda expression? 

4.8.2 Reading from a file 

Reading data from a file is quite easy, however in cases we already know 
the data format we might have different options to get the data in an internal 
format to further process it algorithmically or show it visually. There is also 
a difference if the data has a pure textual nature or if it contains images 
that cannot be interpreted as pure text. Image data has a different semantic 
understanding than textual data has, hence it is important to read in the data 
depending on this aspect. Another problem to be solved is the fact where 
the file is located, that is, in which folder which can be given as a file path 
as an argument in the reading function. Moreover, the file might be stored 
on a server accessible via a URL or on a web page (see Section 4.8.4). 
Reading and parsing the data is one thing, processing it correctly another one. 
Listing 4.52 shows an example for reading data from a local file by using the 
built-in functions open() and read(). With open() we obtain a file object (see 
Section 4.9 for more information on object-oriented programming) while the 
"r" option specifies that the file is prepared for reading. With the encoding 
we can specify the symbol set on which the text is based, here UTF8 but 
we already know ASCII (Section 4.3.2). This object contains methods, one 
of them is the read() method with which we can read the content from 
the file. 

1 f i l e  = open ( "C:\\ Users \\Michael \\ d a t a f i l e  . tx t "  ,  encoding  =  " 
ut f8 "  , " r " ) 

2 t ex t  =  f i l e  . read ( )  

Listing 4.52 Reading data from a local file 

With read(), we always read the whole content of the file but in most of 
the situations we only want to read a small piece of the file, maybe line by 
line or even character by character. Listing 4.53 shows an example for this. 
Reading line by line works by using some kind of line iterator that moves one 
line further after each call of the function. 
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1 f i l e  = open ( "C:\\ Users \\Michael \\ d a t a f i l e  . tx t "  , " r " ) 
2 t ex t  =  f i l e  . read (20)  #  only  read ing  20  cha ra c t e r s  
3 text1  =  f i l e . r e ad l i n e ( )  #  read ing  the  "next "  l i n e  (1 s t  l i n e )  
4 text2  =  f i l e . r e ad l i n e ( )  #  read ing  the  "next "  l i n e  (2nd  l i n e )  
5 

6 f o r  l i n e  in  f i l e  : #  read ing  l i n e  by  l i n e  with  a  loop  
7 t e x t l i n e  =  l i n e  
8 pr in t ( l en (  t e x t l i n e  ) )  
9 

10 f i l e  . c l o s e ( )  

Listing 4.53 Reading smaller pieces of a text file 

If we have finished the task of reading content from a file we have to close 
it to avoid ugly side effects like content that is still not read due to internal 
issues that we cannot easily understand from a programming perspective. 
Such negative issues are typically caused by buffering problems or those 
caused by several processes reading the same file or writing on it. This 
cannot only happen after reading, but also after writing content to files (see 
Section 4.8.3). 

If the data format is based on comma-separated values (csv) we can also 
use a so-called Pandas dataframe to read the content directly into an internal 
data structure. This frees us from reading the text file line by line and from 
carefully parsing it into corresponding data structure elements like rows and 
columns. The csv format reflects tabular data, typically shown to a user by 
using some kind of Excel table. Listing 4.54 illustrates how to read tabular 
data from a file by making use of a Pandas dataframe. 

1 import  pandas  as  pd  
2 

3 df  =  pd . read_csv ( "C:\\ Users \\Michael \\ c s v f i l e  . csv " ) 

Listing 4.54 Reading tabular data by using a Pandas dataframe 

There is even a difference for file reading depending on the fact if we 
have to read text or images. Listing 4.55 shows an example for such binary or 
image data. Reading regular binary data demands for adding the option letter 
"b" for binary to the reading option letter "r." 
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1 import  imageio  as  imio  
2 

3 #  Reading  the  image  
4 image  =  imio  . imread ( "C:\\ Users \\Michael \\ logo  . png" ) 
5 

6 b i n f i l e  =  open ( "C:\\ Users \\Michael \\ logo  . png"  , " rb" ) 
7 t e s t  =  b i n f i l e  . read (10)  
8 b i n f i l e  .  c l o s e  ( )  

Listing 4.55 Reading images or binary data cannot be done by the same procedure as for 
reading texts 

Exercises 

• Exercise 4.8.2.1: Write Python code to read a given text file line by line. 
Then count the characters by using the len() function for each string and 
sum up all numbers to get the size of the file. 

• Exercise 4.8.2.2: Read a given text file character by character and reverse 
each word in the text file. 

4.8.3 Writing on a file 

In some situations it can be useful to know how to write content on a file, for 
example in cases in which we used our data visualization tool to explore data 
to find patterns or anomalies which typically lets the users filter and aggregate 
the data. If we closed now the visualization tool and started it again in a few 
days, weeks, or months, our old explorations and insights are lost. This is the 
point in which it might be a powerful idea to let users store portions of the 
data, typically those that contain the found insights. Apart from the data itself 
also parameters might be stored to start the tool at a later point in time in 
exactly the configuration we stopped the exploration process. Whatever kind 
of storing we do we need to know how to create files and put some kind of 
data in a structured way to these files, with the goal to reload them later on 
again. Listing 4.56 gives an example about how to write data to a file, a new 
one or an existing one, while we can also append data to an existing file, we 
do not have to overwrite the content. Writing on a file is initiated by the letter 
"w" while appending by the letter "a." Also here we should close the file again 
after we have completed all file operations. 
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1 newFile  =  open ( "C:\\ Users \\Michael \\ t e s t  . tx t "  , "a" ) 
2 newFile .  wr i t e ( "Add  one  more  l i n e  to  the  e x i s t i n g  f i l e  . " ) 
3 newFile  .  c l o s e  ( )  
4 

5 newFile2  =  open ( "C:\\ Users \\Michael \\ t e s t  . tx t "  , "w" ) 
6 newFile2 .  wr i t e ( "Old  content  gone ,  r ep laced  by  t h i s  l i n e  . " ) 
7 newFile2  .  c l o s e  ( )  

Listing 4.56 Appending and writing data to a file 

When a file does not exist it will be created. In the other case the file 
might be overwritten accidentally. The best option is to use the "x" letter 
since then an error message will be given if the file already exists to avoid 
losing content. After the "x" option has been used the content of the file can 
be safely modified. 

Exercises 

• Exercise 4.8.3.1: Create a new file called myNewFile.txt and put the 
numbers from 1 to 1000 on the file. 

• Exercise 4.8.3.2: Append the numbers from 2000 to 3000 to the file 
myNewFile.txt and output the content by directly reading from the file. 

4.8.4 Reading web content 

Reading data from a text file or database is important but in some situations 
it is good to directly access the data from a web page, for example if the web 
page is regularly updating its content. What we need is a mechanism that 
more or less automatically connects to the web page by using a URL and gets 
the current HTML text. This text can then be further processed, that is, parsed 
into a certain data format with which we can create our own real-time dataset. 
Listing 4.57 gives an example for this kind of data reading process. 

1 from  u r l l i b  .  r eque s t  import  ur lopen  
2 

3 page  =  ur lopen ( "http : //www.  f u tbo l 24  . com" ) 
4 

5 content  =  page . read ( )  
6 htmltext  =  content  . decode ( " utf  -8 " ) 
7 

8 pr in t  ( htmltext )  

Listing 4.57 Reading data from a web page 

http://www.futbol24.com
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Exercises 

• Exercise 4.8.4.1: Write code to read the HTML content from the online 
version of your favorite newspaper. 

• Exercise 4.8.4.2: Write code to fill a list with numeric values by reading 
the scores from a web page that provides football tables. 

4.9 Object-Oriented Programming 

Also in Python we can find the object-oriented programming paradigm. This 
means we can model a program with classes that serve as some kind of 
template or blueprint from which we can derive objects and instances. Those 
objects have a state and a multitude of methods that can modify the state, that 
is, the values of corresponding variables or attributes. The objects follow the 
principle of encapsulation meaning everything is happening inside an object 
created by a class, that is, an object’s state should only be modified by calling 
the corresponding methods and not just changing the values immediately. 
We can even let the classes inherit from each other, on several inheritance 
hierarchy levels and even merge them together which actually destroys the 
idea of a hierarchy [212], making it to a general graph structure [18]. Actually, 
the inheritance principle brings us to the idea of having parent and child 
classes, just like in real life in pedigree trees known from the field of 
genealogy [63]. Creating classes in object-oriented programming is a mighty 
principle but in some situations, it might not be the best one to find a solution 
to a problem by implementing a program. In some situations, it is still good to 
use functions and avoid the somewhat more blown-up code in object-oriented 
programming. 

In this section, we first describe the idea of creating classes, that is, 
templates that model which general rules the instances of that class should 
follow (Section 4.9.1). The instances of a class must be built in some 
well-defined way to allow working with them later on (Section 4.9.2). 
Methods are the ways to modify the state of the objects created from classes, 
that is, we show how to define such methods and how they can be called 
(Section 4.9.3). The division into parent and child classes and the mighty 
concept of inheritance is illustrated in Section 4.9.4. 

4.9.1 Classes 

A class can be regarded as some kind of blueprint that gives us an internal 
structure on which each object is based that is created later by using this 
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specific class. Classes can even be used inside other classes just like a nested 
structure. Each class follows some well-defined rules (see Listing 4.58). A 
house could be modeled as a class with properties like the number of rooms, 
the square meters, the floors, the address, and the like. Moreover, a house 
could even have some behavior like being dirty, being empty, getting built, 
and the like. A house could also have people living in it, that is, the people 
themselves can be a property of the house but the people have properties 
as well which can be modeled by another class as well, hence the house 
class could include the people class for example. A class does not contain 
data or values, it is just a specification which data should be integrated in 
the corresponding object later on. With each class we can create as many 
instances/objects we need in our program. As a coding convention, class 
names are written with an uppercase letter at the beginning to make the 
instantiated objects distinguishable later on from standard variables that use 
lowercase letters. 

1 c l a s s  House : 
2 toRent  =  False  #  c l a s s  a t t r i b u t e  
3 

4 de f  __init__( s e l f , rooms , smeters ) : 
5 s e l f  . rooms  =  rooms #  i n s t ance  a t t r i b u t e  
6 s e l f . smeters  =  smeters  #  i n s t ance  a t t r i b u t e  

Listing 4.58 Creating a class 

In Listing 4.58, we see the definition of a House class with a so-called init 
function that is used to initialize the later created objects with initial values 
for the given parameters, that is, the state of the corresponding object is set. 
It may be noted that init can have any number of parameters, however, the 
first one is always self which stands for the option to allow new attributes 
to be defined for this object. This can be seen in the two code lines right 
after the init method, actually setting or assigning the values of the attributes 
coming during the creation of the object. They are called instance attributes. 
In contrast to instance attributes we can find class attributes that carry the 
same value for all instances while the instance attributes are individual values 
for each instance of a class. 

Exercises 

• Exercise 4.9.1.1: Create a class Student that includes typical properties 
and behaviors of students. 
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• Exercise 4.9.1.2: Create a class University that includes typical 
properties of universities. 

4.9.2 Objects and instances 

Taking a class as a blueprint and instantiating it to create objects is a powerful 
idea since then the static class without included data and values gets to a 
dynamic object with data and modifiable values. Each object can have its 
own individual values describing its state by the instance attributes. The class 
attribute, on the other hand, can be used to describe a fact about each object, 
hence it is given by a class attribute. However, also the class variable value 
might be changed, it just serves as an initial value when the object is created 
to let each object start with the same value for a class attribute. Listing 4.59 
shows how an object can be instantiated by just using the previously defined 
name of the class (e.g., the one from Listing 4.58) from which we create an 
instance. The simplest way to instantiate is by calling the class name with 
opening and closing parentheses. The parameters inside the parentheses must 
match those ones given in the init method that is used to initialize the values 
of the instance attributes, otherwise we will get an error message. 

1 House (15 ,337)  # s to r ed at a memory address 
2 

3 myHouse = House (11 , 240)  #  as s i gned  to  a  va r i ab l e  
4 myHouse2 = House (9 ,189) #  as s i gned  to  another  va r i ab l e  
5 

6 myHouse == myHouse2 #  r e s u l t s  in  False  

Listing 4.59 Instantiating from a class to get an object 

If we create an object as shown in Listing 4.59, we will obtain this object 
at a memory address inside the computer which we cannot see. Creating two 
or more objects means that they are stored at different memory addresses 
which is also the reason why they are not equal although they model exactly 
the same objects. If we want to further process the created objects we should 
assign them to variables. We can do that since variables (or even constants) 
can carry values which are objects as well. The objects assigned to the 
variables myHouse and myHouse2 are now real instances from the House 
class, each one carrying its own values which come from the initial creation 
of each object in which we provided those values inside the parentheses. The 
self parameter is not relevant anymore in this construct, it is just used to pass 
the values to the instance attributes. 
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Exercises 

• Exercise 4.9.2.1: Write a class Student and create some Student objects. 
They should have a name, an age, a list of grades, and a gender. 

• Exercise 4.9.2.2: Write a class Car and create some Car objects. Those 
objects should be stored in a list. 

4.9.3 Methods 

Methods are a way to modify the instance attribute values from outside, that 
is, after an object has been created we should not modify its state by directly 
accessing and changing the values, but instead everything should happen 
via methods, a special type of functions that actually belong to instances 
of a class. For example, we could directly access the values of the rooms 
and smeters instance attribute from the House object myHouse as shown in 
Listing 4.60. For class attributes this works in the same style. 

1 rooms = myHouse . rooms 
2 squareMeters  =  myHouse .  smeters  
3 

4 i sRentab l e  =  myHouse . toRent  

Listing 4.60 Accessing the values of some instance attributes without using methods 

Apart from accessing those values they can even be changed in a similar 
way just like assigning values to variables. However, this strategy does not 
follow the encapsulation principle, the values should only be accessed and 
modified by so-called instance methods. Those methods are also defined and 
coded in the body of a class and can be used for each instance of that class 
in the same way, just like the instance variables. They also start with the self 
parameter as a first one in the parameter list which works in the same way as 
for the instance variables (see Listing 4.61). The calling syntax, however, is a 
bit different than those from standard Python functions. Methods are always 
bound to an object, hence they are called by stating the name of the object 
first, followed by a dot, followed by the corresponding method name (see 
Listing 4.62). 

1 c l a s s  House : 
2 toRent  =  False  #  c l a s s  a t t r i b u t e  
3 

4 de f  __init__( s e l f , rooms , smeters ) : 
5 s e l f  . rooms  =  rooms #  i n s t ance  a t t r i b u t e  
6 s e l f . smeters  =  smeters  #  i n s t ance  a t t r i b u t e  
7 
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8 de f  getRoomNumber ( s e l f ) : 
9 re turn  s e l f  . rooms  

10 

11 de f  getSquarePerRoom ( s e l f ) : 
12 re turn  s e l f . smeters / s e l f  . rooms 

Listing 4.61 Adding methods to a class 

1 myHouse = House (8 , 209) 
2 

3 rooms = myHouse . getRoomNumber ( ) 
4 roomAverage = myHouse . getSquarePerRoom ( ) 

Listing 4.62 Creating an object from a class and calling methods 

Exercises 

• Exercise 4.9.3.1: Create a class Student, add class and instance 
attributes, and complete the class with several methods allowing to get 
and set the values of the instance attributes. 

• Exercise 4.9.3.2: Add another method to the class that returns the name 
of the student in capital letters. 

4.9.4 Inheritance 

In some real-world scenarios we find objects or persons with similar 
properties but they still differ by some other properties. But somehow the 
core of each object or person is the same. In such a scenario we wish to 
have a strategy that avoids reimplementing the core properties as well as the 
functionality all the time. It seems as if the additional properties must be some 
kind of new implemented code while the core, that is, the same properties 
might be somehow reused from existing code. The principle behind this idea 
is called inheritance since it can categorize classes into parent classes and 
child classes that get all of the properties and functionality from the parent 
classes but they can have more properties and functionality than the parent 
classes. This concept forms some kind of hierarchy, however in Python we 
can also merge classes, similar to the real-world situation between humans, 
but in programming this inheritance concept is even more flexible. Although 
the child classes inherit the attributes (properties) and methods (functionality) 
from the parent classes they can even use the inherited aspects in a more 
specific form while they can also extend their functionality. Listing 4.63 
shows examples to create child classes from the parent class House from 



162 Coding in Python 

before. Those children could be TinyHouse, Hotel, TreeHouse, and so on. 
All of them have rooms and a total number of square meters. However, each 
of them could have additional properties and functionality, a hotel might have 
guests and room prices. 

1 c l a s s  TinyHouse (House ) : 
2 pass  
3 

4 c l a s s  Hotel (House ) : 
5 pass  
6 

7 c l a s s  TreeHouse (House ) : 
8 pass  
9 

10 ho t e lC a l i f o r n i a  =  Hotel (250 ,8346)  
11 smallHouse  =  TinyHouse (1 , 5 ) 
12 natureHouse  =  TreeHouse (2 , 8 )  

Listing 4.63 Parent and child classes for using the principle of inheritance 

Exercises 

• Exercise 4.9.4.1: Define another kind of house that inherits from the 
House class. 

• Exercise 4.9.4.2: Define another kind of hotel that inherits from the 
Hotel class. 



5 
Dashboard Examples 

We can compose a dashboard in various ways, based on one specific 
dataset or even more of them in a linked manner focusing on the specific 
interests of the data analysts and users and on the tasks they are planning 
to solve by means of interactive visualizations. The design of the graphical 
user interface and the design of the visualizations equipped with various 
interaction techniques [258] play major roles to finally obtain a runnable 
and user-friendly tool [127] with which we can explore and analyze 
our data-at-hand. In the previous chapters, we described the ingredients 
from several perspectives like data (Section 2.1), algorithms (Section 2.2), 
visualizations (Section 2.4.1), user interfaces (Section 2.4.3), interactions 
(Section 2.5), and the coding ingredients based on the Python programming 
language (Section 4). In this chapter, we try to combine all of the previously 
learned concepts to create a dashboard for interactive visualizations, allowing 
user interventions as some kind of dialogue between users and the provided 
user interface as well as the individual visual components in form of 
interactive diagrams. The chapter can be studied as a stand-alone chapter 
but we also provide references to previously explained concepts to let the 
reader step back to unknown concepts and components, however we try to 
describe each individual stage in the code for creating one’s own dashboards. 
We look at such dashboards from two perspectives, the design as well as the 
implementation, that is, if a dashboard is designed as some kind of mockup, 
we need to implement the functionality and the visual components and let 
them play together which requires some knowledge in Python, Dash, and a 
graphics library like Plotly Express or even go for creating graphics objects 
in Plotly. 

The chapter is structured as follows. In Section 5.1, we introduce a 
simple first example of a dashboard for showing a histogram in which a 
color parameter can be modified. We extend this dashboard to one that can 
show two diagrams, a histogram and a scatter plot while allowing to filter 
values with a slider (Section 5.2). Moreover, the concept of bootstrap is used 
to define a good layout. Section 5.3 describes a dashboard in which two 
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plots can be controlled while also separate tabs are supported. Moreover, we 
introduce a simple external CSS file to show how the interface parameters 
can be controlled globally to have an additional mechanism apart from the 
inline CSS that can become a tedious task when the user interface components 
appear in numerous ways and have to be visually enhanced one-by-one. 
Also Plotly templates are introduced in this example. In Section 5.4, we 
show how to let an interactive diagram be an input option for another plot. 
This concept allows to react on user interactions in the visualizations by 
interactively modifying other visualizations which shows a first step of the 
popular brushing and linking [243] feature in the research field of information 
visualization [245]. The callback mechanism can be based on an arbitrary 
number of input and output parameters which is also shown in this dashboard 
example. As an add-on to the Plotly diagrams we will use go objects as 
an alternative to pure Plotly diagrams. An even more complex dashboard 
example is explained in Section 5.5 integrating several plots in the user 
interface while also supporting tabs to switch between two visual alternatives. 
For example, in a scatter plot we can select point clouds that are then shown 
in a density heatmap and the categories of the point distribution is also shown 
in a color coded bar chart. Even some more input features are implemented 
as dash core components. 

To run the dashboard codes successfully we recommend to use the 
package versions python 3.9, dash 2.11.1, numpy 1.25, pandas 2.0.3, 
dash-bootstrap-components 1.4.1, and scikit-learn 1.3.0. The Python codes 
can also be found in a GitHub repository https://github.com/BookDas 
hboardDesign. In case the readers have questions they can send them to 
BookDashboardDesign@gmail.com to get answers or useful hints. 

5.1 Modifying the Color in a Diagram 

We are starting this section with a very simple example of a dashboard that 
is based on randomly generated data. This data is visually explored for its 
distribution [213], that is, we are interested in a visualization that shows this 
distribution, that allows some basic interactions [222, 258], and as a user 
input, the color of the diagram should be modifiable between a few standard 
colors [29, 199]. The diagram type that is best suited for such a scenario 
showing distributions of a univariate dataset is the so-called histogram. With 
that we can put a numeric scale on the x-axis and the number of data elements 
falling in each pre-defined interval on the y-axis. Looking at the distributions 
can provide insights into the data, not only from a perspective of a statistician 

https://www.github.com
mailto:BookDashboardDesign@gmail.com
https://www.github.com
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who is familiar with these kinds of diagrams. We first start with some kind 
of hand-drawn mockup to get a better visual idea of what is expected from 
such a dashboard (Section 5.1.1). As a next step we illustrate the Python 
code for getting this dashboard running (Section 5.1.2). As a last step, we 
describe what we will see and which interactions are possible when letting 
the code run, that is, we see our designed and implemented dashboard in 
action (Section 5.1.3). 

5.1.1 A simple dashboard with a histogram 

Before implementing a dashboard, it is a good idea to think about its design, 
that is, the design [13] of the user interface with all of its components 
but also the design of the incorporated visualization techniques. Moreover, 
the layout and the aesthetics [38], that is, visual decoration of all of the 
components is of importance. To get an impression about all the components 
and their locations in the display as well as possible interaction techniques 
and how the components are linked to each other it might be good to draw 
the dashboard, in the best case by hand since that allows the highest degree of 
flexibility [250] (see Section 2.4). Figure 5.1 gives a visual impression about 
the ingredients in the dashboard, however, the interaction techniques must be 
described in textual form since it is difficult to illustrate them visually due to 
the lack of animation in a book. 

Figure 5.1 A hand-drawn mockup of a dashboard for interactively modifying the color of a 
histogram (drawn by Sarah Clavadetscher). 
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There should already be some basic interactions [258] in the dashboard 
which can be listed as follows: 

• Select: A drop-down menu can be used to select a color for the histogram 
from a pre-defined list of colors. 

• Encode: The modification of the color itself can be regarded as some 
kind of visual encoding. 

• Zoom: Since we use interactive Plotly diagrams we have a zooming 
function already included in the histogram. 

• Reconfigure: Even an aggregation of the histogram might be possible in 
a Plotly diagram which is also some kind of rearrangement feature. 

For creating such a basic dashboard example we just need a few 
ingredients like Python (Section 3.1.1 and Chapter 4), Dash (Section 3.1.2), 
and Plotly (Section 3.1.3) while we must have our design concept in mind 
which we have made visible as a hand-drawn mockup (Figure 5.1). 

Exercises 

• Exercise 5.1.1.1: Design a dashboard that uses a box plot instead of a 
histogram to show the data distribution. 

• Exercise 5.1.1.2: Design a dashboard that integrates a value slider to 
select options for colors like 0 for red, 1 for green, and 2 for blue. 

5.1.2 Coding details 

Listing 5.1 shows the coding details to implement the dashboard shown in 
Figure 5.1 with the integrated interaction techniques described above. Lines 
1 to 4 show the modules that need to be imported, with Dash, the Dash core 
and HTML components, Input, Output, and the callback mechanism (Line 1), 
followed by Plotly Express (Line 2), numpy (Line 3), and pandas (Line 4). 

The modules and their functionality in this dashboard implementation can 
be briefly described as follows: 

• Dash: This module is required for the web development, that is, making 
the dashboard publicly available in a web browser. 

• dcc: The dash core components module contains various interactive 
elements for integrating in a user interface like drop-down menus, 
sliders, date pickers, and many more. 
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• html: The dash HTML components module is useful for HTML 
commands to, for example, layout and decorate the dashboard, for 
example, by adjusting sizes, colors, and distances. 

• Input: The input is needed to handle the elements that go into a callback. 
• Output: The output is needed to handle the elements that are returned 

from a callback. 
• callback: This module is responsible for the communication between the 

inputs and outputs. 
• plotly.express: The visualizations in form of interactive diagrams are 

provided by this graphics module. 
• numpy: This library allows to work with complex mathematical 

functions to artificially create, transform, or manipulate data. It focuses 
on efficient computations. 

• pandas as pd: This package is typically used for data reading and parsing 
tasks, useful in the data science and machine learning domain. 

1 from  dash  import  Dash , 
2 import  p l o t l y  .  expre s s  
3 import  numpy as np 
4 import  pandas  as  pd  
5 

6 

7 app = Dash (__name__) 
8 

dcc , html , Input , Output , ca l l b a ck  
as  px  

9 #  generate  random normal d i s t r i b u t e d data 
10 #  and  s t o r e  i t  in  a  Pandas  DataFrame 
11 

12 df = pd . DataFrame ({ ’ number ’ : 
13 np . random .  normal (  l o c =0,  
14 s c a l e  =10,  
15 s i z e =1000) }) 
16 

17 app .  l ayout  =  html . Div ( [ 
18 html .H1( "Dashboard 1" ) ,  
19 dcc  . Dropdown( opt ions =[  ’ red ’ , ’ green ’ , ’ b lue  ’ ] ,  
20 value=’ red  ’  , 
21 id=’  c o l o r  ’  , 
22 mult i=Fal se  )  ,  
23 dcc . Graph ( id="graph" ) 
24 ] )  
25 

26 @cal lback  (  
27 Output ( "graph"  , " f i g u r e " ) ,  
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28 Input ( " c o l o r "  , " value " ) 
29 ) 
30 

31 de f  update_graph ( dropdown_value_color ) : 
32 

33 f i g  =  px .  histogram ( df ,  
34 x="number"  , 
35 co lor_di sc re te_sequence=  
36 [ dropdown_value_color  ] )  
37 f i g  . update_layout ( )  
38 re turn  f i g  
39 

40 i f  __name__ == ’__main__ ’ : 
41 app .  run_server ( debug=True ) 

Listing 5.1 A dashboard example with a histogram and a modifiable color parameter 

The dashboard or app gets actually started in Line 7 with the creation of 
a Dash object. Since each visualization needs some kind of data we generate 
our own artificial dataset [134] which allows us some flexibility in the dataset 
size, structure, and complexity and we are not restricted to a specific dataset 
case. In Line 12, the data generation process is illustrated by using a Pandas 
DataFrame that consists of random normal distributed data, that is, it is 
actually univariate data just mapping a number to each data object while 
each object can be represented on a numerical scale. As we already know, 
one traditional and prominent diagram for this type of data is the so-called 
histogram which we will also use in the dashboard. Lines 17 to 24 illustrate 
how the dashboard’s layout can be built. Since our dashboard is similar to a 
web page, we can make use of HTML and in particular, the division element 
(div) to hierarchically structure the web page. We can see some components, 
the first one given in Line 18 as a title of the dashboard in H1 font size. Lines 
19 to 22 add a drop-down menu for the three color options as a dash core 
component with some additional properties. In Line 23 we also add a graph 
as a dash core component which can actually be any diagram but we already 
decided to integrate a histogram for the univariate data. 

The callback mechanism is coded in Lines 26 to 29. We see that it is 
composed of inputs and outputs, in this simple dashboard we only allow one 
input (a drop-down menu) and one output (a diagram which is a histogram 
in this special case). The following function that is responsible for updating 
the dashboard and which corresponds to the callback mechanism is located 
right below the callback (Lines 31 to 38) and must have the same signature as 
the callback itself, otherwise it runs into compilation errors, or even semantic 
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errors in case the input and output types are the same but the values are mixed 
in some way. The update function can be named as the developer likes but it 
may be noted that in case we have many callbacks and many such update 
functions they should have different, that is, unique names. In the update 
function in this example we see an input parameter which gives the color 
value that is modifiable in the drop-down menu (Line 31) as well as one 
return parameter which is the updated figure, in this case a histogram (Line 
38). The histogram itself gets the artificial dataset as a dataframe (Line 33), 
an attribute named number (Line 34), and a color coding (Lines 35 and 36). 
In Lines 40 and 41 the dashboard is started on a server, which is in its current 
implementation the localhost. 

Exercises 

• Exercise 5.1.2.1: Implement a dashboard that shows a box plot for which 
we can interactively manipulate the color by using a drop-down menu. 

• Exercise 5.1.2.2: Implement a dashboard that uses a slider instead of a 
drop-down menu to select the colors with options like 0 = red, 1 = green, 
and 2 = blue. 

5.1.3 Dashboard in action 

Executing the code from Listing 5.1 will return a URL that we can click on or 
copy into one of our available web browsers. Since a dashboard is some kind 
of web page we can work with it in any newer web browser. It may be noted 
that an implemented dashboard should be tested on several web browsers first 
before making it accessible to the public. This test avoids the effect that some 
people in the world might see a strange layout or a reduced functionality 
which is not caused by the code itself but just by the fact that the browser 
version or browser itself is not suitable. Hence, after such a test we should 
state which web browsers in which versions are supported. Anyhow, if we 
have a look at our first implemented dashboard in a suitable web browser we 
should get the visual result in Figure 5.2. 

We see that there are just two components in the dashboard (as we 
desired), a drop-down menu and a histogram showing the distribution of a 
univariate randomly generated dataset. Admittedly, the dashboard is not very 
aesthetically appealing but it contains the desired functionality. We can find 
a drop-down menu for selecting a color, negatively the drop-down menu is 
horizontally stretched although the text entries for the color names are only 
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Figure 5.2 After executing the dashboard code we get this graphical user interface (dash-
board) with a drop-down menu and a blue colored histogram. 

spanning a few pixels in horizontal direction. This gives room for further 
layout improvements and adjustments later on. We can find the same negative 
issue in the histogram which is currently horizontally stretched. In the next 
implementation iterations, we will incorporate more and more functionality, 
but we also look into aesthetic improvements and visual decorations. 

Exercises 

• Exercise 5.1.3.1: Check the features provided in the dashboard given 
in Figure 5.2. How would you add more options for colors in the 
dashboard? 

• Exercise 5.1.3.2: For the dashboard in Figure 5.2, we could also integrate 
other diagram types apart from a histogram. Which ones do you consider 
useful for the same dataset and how do you integrate them in the 
dashboard? 

5.2 Two Diagrams, Bootstrap, and Value Filter 

We extend the dashboard from Section 5.1 by adding one more input option 
as well as one more diagram. Moreover, we introduce bootstrap as a way to 
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allow more flexibility for the layout of the dashboard. The input options are 
a drop-down menu and a slider with which a numeric value can be selected 
that has an impact on one or several diagrams showing data in a visual way. 
A histogram is useful for univariate data, that is, data which is just measured 
under one attribute. A scatter plot, on the other hand, can be used to show 
correlations between two chosen attributes, that is, bivariate data. Each data 
element is measured under two, typically numeric, attributes which allows 
some kind of spatial representations for each of the two-dimensional data 
points. The distribution of the points in the two-dimensional plane can be 
visually explored for patterns, for example positive or negative correlations. 
However, a static scatter plot will only tell us half of the truth, hence it is 
a good idea to allow interactions like filtering for a certain numeric value. 
The section is organized as follows: In Section 5.2.1, we introduce our design 
idea coming as a hand-drawn mockup with descriptions about the individual 
components and interaction techniques. Then in Section 5.2.2, we explain the 
code to implement such a dashboard while finally, we show the result of the 
running code as a screenshot (Section 5.2.3). 

5.2.1 Extension with a scatter plot and slider 

The next level of dashboard implementation can be reached by allowing more 
than one input and more than one output. In this example we are going to 
integrate a drop-down menu for selecting one category, that is, one color from 
a repertoire of given colors. Moreover, we would like to provide a slider with 
which we can select a value from a numeric value scale. The selected value 
in the drop-down menu should have an impact on the histogram while the 
selected numeric value in the slider should have an impact on the scatter 
plot. These two types of inputs should be applied independently by the users, 
hence we need to split the callback mechanism into two callbacks with two 
separate update functions. Since we have four components now, two inputs 
and two outputs, we can already get a more complex layout for our dashboard 
interface. We would like to have the inputs in the top row and the outputs in 
the form of diagrams in the bottom row, but each input–output horizontally 
aligned (see the mockup in Figure 5.3). 

In addition to the previous dashboard, the users should also be able to 
interact with the user interface but also with the two diagrams as explained in 
the following: 
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Figure 5.3 A mockup of a dashboard with a drop-down menu and a slider for manipulating 
the color of a histogram and for filtering a scatter plot (drawn by Sarah Clavadetscher). 

• Numeric filter: A slider can be used to select a value in a given range. 
The selected value can be used as a filter to reduce the number of data 
elements in the scatter plot. 

• Geometric zoom: Since we use Plotly diagrams a geometric zooming 
function is supported in the scatter plot as well. 

• Undo: The zooming interaction can be made undone by double clicking 
in the plot. 

We can implement this extended dashboard by using the dashboard 
example from before and by just adding the new functionality and features 
at the right place (see Section 5.2.2). 

Exercises 

• Exercise 5.2.1.1: Design a dashboard that integrates a range slider 
instead of a regular slider for the scatter plot. 

• Exercise 5.2.1.2: Design a dashboard that shows the scatter plot on the 
left-hand side and the histogram on the right-hand side. Moreover the 
inputs in form of a drop-down menu and a slider should be placed below 
the diagrams and not above them. 

5.2.2 Coding details 

Listing 5.2 shows the code for the extended dashboard. The imports are quite 
similar to the previous dashboard but we have two more modules imported 
that can be listed as follows: 
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• math: This module is needed for mathematical functions like ceil, floor, 
factorial, comb, and many more. 

• dash_bootstrap_components: This library consists of so-called bootstrap 
components with the purpose of styling dashboards and apps, that is, 
with a focus on user interface layouts for example. 

1 import  math 
2 from  dash  import  Dash , dcc , html , Input , Output 
3 import  p l o t l y  .  expre s s  as  px  
4 import  numpy as np 
5 import  pandas  as  pd  
6 import  dash_bootstrap_components  as  dbc  
7 

8 app = Dash (__name__, 
9 ex t e rna l_s ty l e s h e e t s =[dbc  .  themes  .BOOTSTRAP] ) 

10 

11 #  generate  random  normal  d i s t r i b u t e d  data  f o r  x  and  y  
12 #  and  s t o r e  i t  in  a  pandas  DataFrame  
13 

14 df = pd . DataFrame ({ ’ y ’ : 
15 

16 

17 ’ x  ’  : 
18 

19 

20 

21 app .  l ayout  =  html . Div ( [ 
22 html .H1( "Dashboard 
23 

24 dbc .Row( [ 

np . random . normal (  l o c =0,  
s c a l e  =10,  
s i z e =1000) , 

np . random . normal (  l o c  =10,  
s c a l e  =2,  

s i z e =1000) }) 

2" ) ,  

25 dbc . Col ( [ dcc . Dropdown( opt ions =[  ’ red  ’  , 
26 ’  green  ’  , 
27 ’ b lue  ’ ] ,  
28 value=’ red  ’  , 
29 id=’  c o l o r  ’  , 
30 mult i=Fal se  )  ]  ,  width=6)  ,  
31 dbc . Col ( [ dcc  . S l i d e r (min=math . f l o o r ( df [ ’ y ’ ] . min ( ) ) ,  
32 max=math .  c e i l ( df [  ’ y ’ ] . max( ) ) ,  
33 id="min_value" ) 
34 ] ,  width=6)  
35 ] )  ,  
36 

37 dbc .Row( [ 
38 dbc . Col  ( [  
39 dcc . Graph ( id="graph_1" ) 
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40 ]  ,  width=6)  ,  
41 

42 dbc . Col ( [ 
43 dcc . Graph ( id="graph_2" ) 
44 ]  ,  width=6)  
45 ] )  
46 

47 ]  ,  className="m-4 " ) 
48 

49 

50 @app .  ca l l b a ck  (  
51 Output ( "graph_1" , " f i g u r e  " ) ,  
52 Input ( " c o l o r "  , " value " ) 
53 ) 
54 de f  update_graph_1 ( dropdown_value_color )  :  
55 

56 f i g  =  px .  histogram ( df ,  
57 x="y"  , 
58 co lor_di sc re te_sequence=  
59 [  dropdown_value_color  ] )  
60 f i g  . update_layout ( )  
61 re turn  f i g  
62 

63 

64 @app .  ca l l b a ck  (  
65 Output ( "graph_2" , " f i g u r e  " ) ,  
66 Input ( "min_value" , " value " ) 
67 ) 
68 de f  update_graph_2 ( min_value ) : 
69 d f f  =  df [ df [  ’ y ’ ]> min_value ] 
70 f i g  =  px .  s c a t t e r ( d f f  ,  x=’x ’ , y=’y ’ ) 
71 f i g  . update_layout ( )  
72 re turn  f i g  
73 

74 i f  __name__ == ’__main__ ’ : 
75 app .  run_server ( debug=True ,  port =8000)  

Listing 5.2 Including a histogram and a scatter plot in a dashboard with additional bootstrap 
for the layout 

After all imports have been made the rest of the code describes the 
functionality and features of the dashboard. Lines 8 and 9 initialize the 
dashboard and include the bootstrap to improve the layout of the user 
interface. The data is artificially generated in Lines 14 to 19 as a Pandas 
DataFrame with 2 attributes called ’x’ and ’y’. The data has the additional 
property that it is normally distributed in both data dimensions. The layout 
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of the dashboard is created in Lines 21 to 47 making use of the bootstrap by 
allowing two rows, each having 2 columns, resulting in a 2 times 2 grid layout 
(see Figure 5.4). The first row includes the inputs in form of a drop-down 
menu and a slider while the second row includes the two Plotly diagrams in 
form of a histogram and a scatter plot which is actually not further specified 
here, just the type is given which is some kind of graph. The drop-down menu 
works similarly as in the previous dashboard example while the slider ranges 
between a minimum and a maximum value for which the math functions 
are needed for value rounding purposes. Both inputs get unique identifiers 
which are important for the callback mechanism at a later point in time. 
Those identifiers are ’color’ and ’min_value’ respectively. The graphs also 
get identifiers just called ’graph_1’ and ’graph_2’. All components are set to 
a fixed width of 6. 

Figure 5.4 A grid layout may consist of a number of rows and columns, like 2 of them as 
in this case. 

In this example we have two callback mechanisms which is a different 
strategy compared to the previous dashboard example with only one callback. 
The first callback can be found in Lines 50 to 53, followed by the 
corresponding update function in Lines 54 to 61. This first callback is 
responsible for updating the histogram, that is, it gets a color value from 
the drop-down menu as input and outputs the corresponding histogram. 
The detailed instructions for this update are shown in the function called 
’update_graph_1’ in Lines 54 to 61. The second callback can be found in 
Lines 64 to 67, followed by the corresponding update function in Lines 68 to 
72. Here the callback gets a value from the slider and outputs a corresponding 
updated scatter plot with the filtered values. The details for this update 
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function are given in Lines 68 to 72 in the ’update_graph_2’ function. The 
value filter is also implemented in this update function given in Line 69. The 
rest of the program was already described in the previous dashboard example 
with the extension that the port 8000 is used. 

Exercises 

• Exercise 5.2.2.1: Modify the dashboard code in a way that the scatter 
plot can be filtered with a range slider allowing an interval of numeric 
values. 

• Exercise 5.2.2.2: Change the input–output mechanism: The scatter plot 
should allow to modify its color by a drop-down menu and the histogram 
should be filtered for value intervals, on the x-axis but also on the y-axis. 

Figure 5.5 The extended dashboard will show a few more features than the one given in 
Section 5.1.1. Now, we can see a slider and a scatter plot as well. Moreover, we also have to 
care for a good layout of the components although we just have 4 of them at the moment. 

5.2.3 Dashboard in action 

Figure 5.5 shows the result when executing the dashboard code given in 
Listing 5.2. We see the title Dashboard 2 which was generated by an HTML 
H1 component. Then, the layout is split into 2 rows and 2 columns (see 
Figure 5.4), that is, some kind of grid layout with the inputs in the first row. 
On the left-hand side the drop-down menu is located for the color selection 
while on the right-hand side, we see the slider for the numeric filter. The 
bottom row consists of the histogram in a selected color on the left-hand side 
while the right-hand side is reserved for the scatter plot which is currently 
filtered for the selected numeric value in the slider input. Although the layout 
is already a bit more complex than in the previous dashboard example it is 
still not very flexible. There are various options to improve the layout, make 
it more dynamic and flexible, and even interactively modifiable. 
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Exercises 

• Exercise 5.2.3.1: Modify the scatter plot in the dashboard to let it also 
visually encode data in the size and shape of the points. 

• Exercise 5.2.3.2: Modify the scatter plot in the dashboard to let it 
use intervals for the numeric values instead of discrete numbers. Each 
interval should be visually encoded as a point size and/or a point shape. 

5.3 Dashboard with Tabs, CSS, and Plotly Template 

We further extend the previous dashboard by the concept of tabs, that is, 
allowing each diagram to be active and in focus separately, if the users 
selected/activated it. If a tab is activated, the corresponding diagram and 
functionality can be worked with. To achieve a better and more maintainable 
layout and even more aesthetic features for each dashboard component we 
include the concept of CSS, but this time not in the traditional inline variant, 
this time we use a global CSS file with which all components of a certain kind 
can be visually enhanced, decorated, and augmented globally. CSS provides 
some kind of linear hierarchy in external, internal, and inline CSS, hence 
the cascading concept that allows to override global features with more local 
ones, making the styling process easier and more flexible. Even more, we 
introduce the concept of Plotly templates supporting special Plotly themes 
to graphically style the diagrams based on a common visual appearance. 
The section is organized in the following way: In Section 5.3.1, we describe 
the design idea with a hand-drawn mockup again as well as explanations 
of the individual components and interaction techniques. This is followed 
by Section 5.3.2 explaining the individual code parts and lines to give the 
programmer a starting point for creating own dashboards in this style. Finally, 
we show a screenshot of the running dashboard in Section 5.3.3 and explain 
the visual features. 

5.3.1 Histogram and scatter plot separately 

Sometimes it is a good idea to keep the functionality, features, and diagrams 
in a separate tab, to create functionality groups that reduce the cognitive effort 
for the users when finding individual features to solve a certain task. The 
users can switch between those groups to allow a more structured exploration 
strategy. This means one region in a dashboard might be given a specific 
focus indicating that only the functions and visualizations in this region are 
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active at the moment on users’ demands, that is, users’ current workspace is 
exactly there while the other features and functionalities are still reachable in 
a quick way, just by clicking on one of the other provided tabs. Such a concept 
will be illustrated in the dashboard in this section while from a visualization 
perspective we will focus again on simple visualization techniques like a 
histogram and a scatter plot. The readers can create now their own visual 
features and exchange the existing ones with their own ones. The histogram’s 
color can still be modified by using a drop-down menu with colors while 
the scatter plot values can be filtered by a slider. The functionality is clearly 
separated, that is, the drop-down menu belongs to the histogram and the 
slider belongs to the scatter plot. Figure 5.6 illustrates how such a dashboard 
can be imagined before we can implement its functionality in form of user 
interface components, diagrams, and interactions. We also integrate CSS 
as a concept to globally guide the appearance and layout of the individual 
components. The Plotly diagrams can now be based on a certain template 
as well, for example to let all of them look consistently, this idea might be 
regarded as a similar idea to CSS while with CSS we actually guide and 
equip the user interface components with additional features, not primarily 
the visualizations and diagrams. 

Figure 5.6 A hand-drawn mockup of a dashboard for displaying data in a histogram and 
a scatter plot while both diagrams and their inputs can be given a specific focus by a tab 
mechanism (drawn by Sarah Clavadetscher). 
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From the interaction perspective, we focus now on additional ways to 
create a dialog between our users and the dashboard’s user interface and 
visualization components. Also, special features related to those interactions 
can be found: 

• Separate interactivity: Instead of allowing all components to be 
interactive we can even specifically set a component or region in a 
dashboard to be active, that is, to be able to accept interactions from 
the user side. One idea is to use the concept of tabs. 

• Setting Focus: When starting interacting with a component we can 
explicitly set the focus to this component by using tabs which 
lets organize the features and functionality into active and inactive 
components allowing some kind of structured exploration strategy. 

• Highlighting: The component or even visualization in focus can be 
highlighted to show the users which component is actually active and 
which ones are not active at the moment. 

• Graying out: The counterpart of highlighting might be the graying out 
of a component or several of them. Graying out means it is inactive at 
the moment but it is still partially visible for an overview or even for 
contextual information. 

After the design phase we can start implementing this kind of dashboard 
with the given visualizations, user interface components, as well as 
interaction techniques and interaction-related aspects. The implementation 
details can be read in Section 5.3.2. 

Exercises 

• Exercise 5.3.1.1: Design a dashboard that contains four tabs with four 
diagrams and corresponding interaction options like a drop-down menu, 
a slider, a text field, and a date picker. 

• Exercise 5.3.1.2: Which kinds of features might be important to 
dynamically adapt in a dashboard, that is, on users’ demands? 
Discuss! 

5.3.2 Coding details 

Listing 5.3 shows the external CSS file for the dashboard. We can see 
that there are three subsections including the header, the content, and the 
tab_content. The first part sets the margins in the header, that is, in all four 
orientations top, bottom, right, and left. Top is set to 0 px while all others are 
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set to 25 px. The margins are also set for the content (second part) in the same 
manner while the third part just sets the margin to the top to 60 px which is 
the tab content. Actually, in the CSS file, we can define nearly any kind of 
additional property a certain user interface component should have, not only 
the margins but also colors, font sizes, border sizes, backgrounds, and many 
more. 

1 .  header  {  
2 margin  :  0px  25px  25px  25px ;  
3 /*  margin  - top  margin  - r i g h t  margin  -
4 } 
5 

6 .  content  {  
7 margin  :  0px  25px  25px  25px ;  
8 } 
9 

10 .  tab_content  {  
11 margin - top : 60px ; 
12 } 

bottom  margin  - l e f t */  

Listing 5.3 A CSS file for improving the layout and aesthetics of the user interface of the 
dashboard 

Listing 5.4 illustrates the code for the dashboard shown in the hand-drawn 
mockup in Figure 5.6. The imported modules are already familiar from the 
previous dashboard examples, consequently we will directly jump into the 
Python code. 

1 import  math 
2 

3 from  dash  import  Dash , dcc , html , Input , Output 
4 import  p l o t l y  .  expre s s  as  px  
5 import  numpy as np 
6 import  pandas  as  pd  
7 import  dash_bootstrap_components  as  dbc  
8 

9 #  new :  Tabs  f o r  a  be t t e r  overview  
10 

11 #  new :  ex t e rna l  CSS  ->  main . c s s 
12 #  (  nothing  must  be  changed  in  the  code  
13 #  i f  c s s  f i l e  in  f o l d e r  ’ a s s e t s  ’  
14 

15 #  new :  p l o t l y  template="plot ly_white "  
16 #  https  : //  p l o t l y  . com/python/ templates /  

https://www.plotly.com


17

18 app = Dash (__name__, 
19 ex t e rna l_s ty l e s h e e t s =[dbc  .  themes  .BOOTSTRAP] ) 
20

21 #  generate  random  normal  d i s t r i b u t e d  data  
22 #  f o r  x  and  y  and  s t o r e  i t  in  a  pandas  DataFrame 
23

24 df = pd . DataFrame ({ ’ y ’ :  np . random . normal ( l o c =0,  
25 s c a l e  =10,  
26 s i z e =1000) , 
27 ’ x ’ :  np . random . normal ( l o c  =10,  
28 s c a l e  =2,  
29 s i z e =1000) }) 
30

31 app .  l ayout  =  html . Div ( [ 
32 html . Div ( 
33 [ html .H1( "Dashboard 3" ) ] ,  
34 className="header " ) ,  
35 html . Div ( [ 
36 dcc . Tabs ( id=" tabs "  , 
37 ch i l d r en  =[  
38 dcc  . Tab( l a b e l= ’Tab One ’ , 
39 id="tab_1_graphs" , 
40 ch i l d r en =[  
41 html . Div ( [ 
42 dbc .Row( [ 
43 dbc . Col ( [ dcc . Dropdown( 
44 opt ions =[  ’ red  ’  , 
45 ’  green  ’  , 
46 ’ b lue  ’ ] ,  
47 value=’ red  ’  , 
48 id=’  c o l o r  ’  , 
49 mult i=Fal se  )  ]  ,  
50 width=6)  ,  
51 dbc . Col ( [ dcc  .  S l i d e r (  
52 min=math .  f l o o r  (  
53 df [  ’ y ’ ] . min ( ) ) ,  
54 max=math .  c e i l (  
55 df [  ’ y ’ ] . max( ) ) ,  
56 id="min_value" ) ]  ,  
57 width=6)  
58 ] )  ,  
59 dbc .Row( [ 
60 dbc . Col ( [ 
61 dcc . Graph ( id="graph_1" ) ]  ,  
62 width=6)  ,  
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63 dbc . Col  ( [  
64 dcc . Graph ( id="graph_2" ) ]  ,  

width=6)  
66 ] )  
67 ]  ,  className="tab_content " ) ,  
68 ] )  ,  
69 dcc  . Tab(  l a b e l=’Tab Two ’ , 

id="tab_2_graphs" ,  ch i l d r en =[  
71 html . Div ( [ ] , 
72 className="tab_content" ) 
73 ] )  ,  
74 ] )  

]  ,  className=" content " ) 
76 ] )  
77 

78 @app .  ca l l b a ck  (  
79 Output ( "graph_1" , " f i g u r e  " ) ,  

Input ( " c o l o r "  , " value " ) 
81 ) 
82 de f  update_graph_1 ( dropdown_value_color )  :  
83 f i g  =  px .  histogram ( df ,  
84 x="y"  , 

co lor_di sc re te_sequence =[  
dropdown_value_color  ] )  

86 f i g  . update_layout ( template=" plot ly_white " ) 
87 re turn  f i g  
88 

89 @app .  ca l l b a ck  (  
Output ( "graph_2" , " f i g u r e  " ) ,  

91 Input ( "min_value" , " value " ) 
92 ) 
93 de f  update_graph_2 ( min_value ) : 
94 i f  min_value : 

d f f  =  df [ df [  ’ y ’ ] > min_value ] 
96 e l s e  : 
97 d f f  =  df  
98 f i g  =  px .  s c a t t e r ( d f f  ,  x=’x ’ , y=’y ’ ) 
99 f i g  . update_layout ( template=" plot ly_white " ) 

re turn  f i g  
101 

102 i f  __name__ == ’__main__ ’ : 
103 app .  run_server ( debug=True ,  port =8000)  

Listing 5.4 A dashboard using tabs and CSS as well as a Plotly template 
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The code for this dashboard is a bit more complex than the codes for the 
two dashboards before. This is due to the fact that we included more features 
and concepts, with CSS, tabs, and Plotly templates among them. In Lines 18 
and 19, we initialize the dashboard by including external stylesheets with the 
bootstrap mechanism. Lines 24 to 29 are responsible for generating artificial 
data based on a random normal distribution. In cases we need other artificial 
data or real-life data, this is the place in the code how to put any kind of data 
into a Pandas dataframe. 

With Line 31, we begin setting the layout of the dashboard by using the 
HTML division element again. This div element is split into two subelements 
allowing to split the display area for our dashboard (typically the computer 
monitor) into two actually equally-sized subregions that we can fill with 
components separately. The first subregion in Lines 32 to 34 is just creating 
some kind of title for the dashboard followed by the CSS styles coming 
from the main.css file given in Listing 5.3 by using the className variable 
set to "header." The header information can be found in the CSS file in the 
corresponding section. The next subregion is introduced in Line 35 with the 
next div element. This time the subregion looks a bit more complex starting 
with the dash core component Tabs given the id "tabs." This component can 
have as many children as we like, in our case just two, representing the two 
tabs we are planning to integrate. Each tab itself can be added as a core 
component (dcc) starting with tab one in Line 38 giving it a label and an 
id again, to later reference and access it with our callback mechanism. Also 
the tab itself can be suborganized by again using the HTML div component. 
Now the bootstrap comes into play organizing the dashboard’s user interface 
into rows and columns including the drop-down menu and the slider in the 
first row and the two diagrams in the second row (Lines 42 to 67). It may 
be noted that the drop-down (Lines 43 to 49) can be decorated on designers’ 
demands as well as the slider (Lines 51 to 56). The CSS styles are based on 
the tab_content section from the main CSS file in Listing 5.3. The second tab 
(Lines 69 to 74) is just shown for illustrative purposes, at the moment there is 
not much functionality, but in the next dashboard we will also fill this tab with 
more functionality. The entire style of this dashboard component is based on 
the style given by the "content" section of the CSS file (Line 75). 

In this dashboard we can find two callbacks, one for the dialogue between 
the histogram and the user via a drop-down menu and one for the user 
dialogue via a slider with the scatter plot. The first callback starts in Line 
78 and defines one input value for the color selection and one output value 
for the corresponding figure which is a histogram in this special case (Lines 
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78 to 81). The update function for this callback can be seen in the following 
code lines (Lines 82 to 87). We see that a histogram is created with Plotly 
with the data as a Pandas dataframe and further parameters. In Line 86 we 
additionally find the template information given as "plotly_white." Finally, 
the created figure is returned. The second callback starts in Line 89 with 
an input value for the filter and a corresponding figure (a scatter plot) as 
return value. The corresponding update function describes how this filter 
value has to be handled and which impact it has on a created scatter plot 
(Lines 93 to 100). 

Exercises 

• Exercise 5.3.2.1: Implement functionality and features for the second 
tab in the dashboard application and test it. 

• Exercise 5.3.2.2: Create a dashboard with three tabs instead of two. 

5.3.3 Dashboard in action 

Figure 5.7 shows the result when executing the code above with the external 
CSS in mind. This should be located in a folder called "assets." We can see 
that tab one is currently active since it is not grayed out. This means that the 
histogram and the scatter plot are visible in this scenario. Currently, the color 
red is chosen for the histogram while the scatter plot is not filtered due to the 
fact that the slider is turned to the leftmost position. Still, the dashboard is 
quite simple but the code already contains some useful features with some 
functionality. 

Figure 5.7 A dashboard showing two tabs while tab one has the focus at the moment. Two 
diagrams are integrated: A histogram (left) and a scatter plot (right). 
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Exercises 

• Exercise 5.3.3.1: Create a dashboard with four tabs in which each tab 
should be used to switch to a new diagram. You can use the same data 
generator as in the dashboards explained before. 

• Exercise 5.3.3.2: Modify the external CSS file to also adapt the 
background colors of the tabs. Moreover, use a different Plotly template 
instead of "plotly_white" to get another visual appearance of the 
diagrams. 

5.4 Inputs from a Plot and Plotly Go 

To go one step further and to also allow inputs from an interactive diagram to 
be the output for a different diagram, we will create another dashboard on top 
of most of the already existing features and functionality. The relevant feature 
from information visualization that comes into play here is called brushing 
and linking, meaning a certain subset of visual elements in one diagram can 
be selected (and highlighted) and, as a consequence, all of the selected visual 
elements will be highlighted in all (visible) diagrams as well. This feature is a 
very important one in information visualization since it connects several plots 
based on a selection feature. In this extended dashboard, we also look into 
another way of using Plotly, this time by means of so-called Plotly go objects, 
while go stands for graph objects that are more flexible but also require more 
code to implement. In this section we first introduce the dashboard design 
by a hand-drawn mockup (see Section 5.4.1). Actually, the user interface of 
the dashboard with the required features looks very similar to the already 
shown dashboards, but in the background, we have to implement more code 
to get the functionality running. The corresponding code can be found in 
Section 5.4.2. Finally, we conclude the section by showing the results of the 
running code with a dashboard screen shot (Section 5.4.3). 

5.4.1 Selecting point clouds for an overview 

Figure 5.8 shows a mockup for a dashboard’s graphical user interface that 
consists of two visualizations of an artificially generated dataset for trivariate 
data. On the one hand, we would like to see the data as a scatter plot for 
detecting correlations between the two numerical data attributes and the one 
categorical data attribute, on the other hand we wish to see a distribution of 
the data split by its categorical information given as the color of the points 
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in a corresponding bar chart. The new idea in this dashboard is based on 
supporting the spatial selection of point clouds in the scatter plot while at the 
same time updating the selected point cloud and the distribution of points as 
a bar chart. This brushing and linking feature is very popular in the field 
of information visualization, in most cases for more than one plot as we 
demonstrate in this simple dashboard example. 

Figure 5.8 A hand-drawn mockup for a user interface of a dashboard with a scatter plot, 
allowing to select a point cloud for which we see the point distribution in a linked and color 
coded bar chart (drawn by Sarah Clavadetscher). 

In this dashboard we support one new interaction technique among the 
already existing ones from before. This is defined as brushing and linking in 
the field of information visualization: 

• Brushing and linking: In cases in which a visualization tool consists 
of several visualizations/diagrams showing views and perspectives on 
the same dataset, we can interactively connect/link those visualizations. 
This means in particular that a selection of data elements in one view has 
an impact on all other views in which those data elements are visually 
represented as well. 
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Exercises 

• Exercise 5.4.1.1: Integrate a fourth color in the drop-down menu. Extend 
the dashboard by this new color. 

• Exercise 5.4.1.2: Apart from the visual variable color we could also add 
the shape of the points in the scatter plot. Extend the dashboard to also 
allow colors and shapes, for the drop-down menu, for the scatter plot, 
and for the bar chart. 

5.4.2 Coding details 

In Listing 5.5, we can read the code for the dashboard designed in Figure 5.8. 
There are some new concepts integrated like more than one plot in a callback 
mechanism, brushing and linking, making one plot the input for another 
plot, and the Plotly go objects. To let the code run reliably we need to 
import a few modules which we have not imported before in the previously 
described dashboards. Moreover, we use the same external CSS file as in the 
previous example given in Listing 5.3. Two more modules are required in 
this example: 

• plotly.graph_objects as go: This module contains a figure scheme 
organized in some kind of hierarchy consisting of Plotly classes. With 
this concept we can create so-called graph objects which are actually 
instances of the Python classes. 

• sklearn.datasets: With this package we can use some existing datasets 
from different application domains. This means the data is already in 
a prepared and well-known data format and several other researchers 
might have analyzed the same dataset creating some kind of ground truth 
or golden standard. 

1 import  math 
2 

3 from  dash  import  Dash , dcc , html , Input , Output 
4 import  p l o t l y  .  expre s s  as  px  
5 import  p l o t l y  .  graph_objects  as  go  
6 import  numpy as np 
7 import  pandas  as  pd  
8 import  dash_bootstrap_components  as  dbc  
9 from  sk l e a rn  .  da ta s e t s  import  make_blobs 

10 

11 #  new :  more  than  one  p l o t  in  a  ca l l ba ck  
12 #  new :  one  p lo t  as  an  input  f o r  another  p lo t  
13 #  new :  p l o t l y  go  ob j e c t  



14

15 app = Dash (__name__, 
16 ex t e rna l_s ty l e s h e e t s  =[dbc  .  themes  .BOOTSTRAP] ) 
17

18 #  generate  random  normal  d i s t r i b u t e d  data  
19 # f o r x and y and s t o r e i t in a pandas DataFrame 
20

21 df = pd . DataFrame ({ ’ y ’ : np . random . normal ( l o c =0, 
22 s c a l e  =10,  
23 s i z e =1000) , 
24 ’ x ’ : np . random . normal ( l o c =10, 
25 s c a l e  =2,  
26 s i z e =1000) }) 
27

28 #  de f i n e  c l u s t e r  c o l o r s  
29

30 COLORS = { ’ 0 ’ : " red "  , 
31 ’ 1 ’ : " blue "  , 
32 ’ 2  ’  : " grey "} 
33

34 X, y = make_blobs ( n_samples=100 , 
35 c en t e r s  =3,  
36 n_features=2,  
37 random_state=0)  
38 c lu s t e r_d f  =  pd . DataFrame ( data=X,  
39 gcolumns=["X" , "Y" ] )  
40 c lu s t e r_d f [  ’ c l u s t e r  ’ ] = [ s t r ( i )  f o r  i in  y ]  
41

42 app .  l ayout  =  html . Div ( [ 
43 html . Div ( 
44 [ html .H1( "Dashboard 4" ) ] ,  
45 className="header " ) ,  
46 html . Div ( [ 
47 dcc . Tabs ( id=" tabs "  , 
48 ch i l d r en  =[  
49 dcc . Tab( l a b e l= ’Tab One ’ , 
50 id="tab_1_graphs" ,  ch i l d r en  =[  
51 html . Div ( [ 
52 dbc .Row( [ 
53 dbc . Col ( [ 
54 dcc . Dropdown( 
55 opt ions =[  ’ red  ’  , 
56 ’  green  ’  , 
57 ’ b lue  ’ ] ,  
58 value=’  red  ’  , 
59 id=’  c o l o r  ’  , 
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60 mult i=Fal se  )  ]  ,  
61 width=6)  ,  
62 dbc . Col ( [ 
63 dcc  .  S l i d e r  (min= 
64 math . f l o o r ( 
65 df [  ’ y ’ ] . min ( ) ) ,
66 max=math .  c e i l (  
67 df [  ’ y ’ ] . max( ) ) ,
68 id="min_value" ) 
69 ]  ,  width=6)  
70 ] )  ,  
71 dbc .Row( [ 
72 dbc . Col ( [ 
73 dcc . Graph ( id="graph_1" ) 
74 ]  ,  width=6)  ,  
75 dbc . Col ( [ 
76 dcc . Graph ( id="graph_2" ) 
77 ]  ,  width=6)  
78 ] )  
79 ]  ,  className="tab_content " ) ,  
80 ] )  ,  
81 dcc  . Tab(  l a b e l=’Tab Two ’ , 
82 id="tab_2_graphs" , 
83 ch i l d r en  =[  
84 html . Div ( [ 
85 dbc .Row( [ 
86 dbc . Col ( [ 
87 dcc . Graph ( 
88 id="graph_3" ) 
89 ]  ,  width=8)  ,  
90 dbc . Col ( [ 
91 dcc . Graph ( 
92 id="graph_4" ) 
93 ]  ,  width=4)  
94 ] )  
95 ]  ,  className="tab_content " ) 
96 ] )  ,  
97 ] )  
98 ]  ,  className=" content " ) 
99 ] )  

100

101 @app .  ca l l b a ck  (  
102 Output ( "graph_1" , " f i g u r e  " ) ,  
103 Input ( " c o l o r " , " value " ) 
104 ) 
105 de f  update_graph_1 ( dropdown_value_color )  :  
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106

107 x="y"  , 
108 co lor_di sc re te_sequence=  
109 [ dropdown_value_color  ] )  
110 f i g  . update_layout ( template=" plot ly_white " ) 
111 re turn  f i g  
112

113 @app .  ca l l b a ck  (  
114 Output ( "graph_2" , " f i g u r e " ) ,  
115 Input ( "min_value" , " value " ) 
116 ) 
117 de f  update_graph_2 ( min_value ) : 
118 i f  min_value : 
119 d f f  =  df [ df [  ’ y ’ ] > min_value ] 
120 e l s e  : 
121 d f f  =  df  
122

123 f i g  =  px .  s c a t t e r ( d f f  ,  x=’x ’ , y=’y ’ ) 
124 f i g  . update_layout ( template=" plot ly_white " ) 
125 re turn  f i g  
126

127 @app .  ca l l b a ck (Output ( "graph_3" , " f i g u r e " ) ,  
128 Output ( "graph_4" , " f i g u r e " ) ,  
129 Input ( "graph_3" , " re layoutData " ) 
130 ) 
131 de f  update_graph_3_and_4( se lected_data ) : 
132 i f  se l ected_data  i s  None or  
133 ( i s i n s t a n c e ( se lected_data  ,  d i c t ) and 
134 ’ xax i s . range [ 0 ]  ’  not  in  se l ected_data ) :  
135 c l u s t e r_d f f  =  c lu s t e r_d f  
136 e l s e  : 
137 c l u s t e r_d f f  =  
138 c lu s t e r_d f  [ (  c lu s t e r_d f  [  ’X ’ ] >=  
139 se l ected_data . get (  ’ xax i s  . range [ 0 ]  ’ ) )  &  
140 ( c lu s t e r_d f  [  ’X ’ ] <=  
141 se l ected_data . get (  ’ xax i s  . range [ 1 ]  ’ ) )  &  
142 ( c lu s t e r_d f  [  ’Y ’ ] >=  
143 se l ected_data . get (  ’ yax i s  . range [ 0 ]  ’ ) )  &  
144 ( c lu s t e r_d f  [  ’Y ’ ] <=  
145 se l ected_data . get (  ’ yax i s  . range [ 1 ]  ’ ) ) ]  
146

147 f i g 3  =  px .  s c a t t e r ( c lu s t e r_d f f  , 
148 x="X" , 
149 y="Y" , 
150 c o l o r=" c l u s t e r "  , 
151 color_discrete_map=COLORS,  
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f i g  =  px . histogram ( df ,  
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152 category_orders=  
153 {" c l u s t e r " : [ "0" , "1" , "2" ] } ,  
154 he ight =750) 
155 

156 f i g 3  . update_layout ( template=" plot ly_white "  , 
157 co lo rax i s_showsca l e=Fal se  )  
158 f i g 3  . update_traces ( marker=d i c t ( s i z e =8) )  
159 

160 group_counts  =  
161 c l u s t e r_d f f [ [  ’ c l u s t e r  ’ , ’X ’ ] ] .  
162 groupby (  ’ c l u s t e r  ’ ) . count ( )  
163 

164 f i g 4  =  go . Figure (  
165 data=[go . Bar (  
166 x=group_counts  .  index  ,  
167 y=group_counts [  ’X ’ ] ,  
168 marker_color=  
169 [COLORS. get ( i ) f o r  i in  group_counts . index ]  
170 ) ] )  
171 

172 f i g 4  . update_layout ( he ight =750 ,  
173 template="plot ly_white "  , 
174 t i t l e="<b>Counts  per  c l u s t e r </b>" , 
175 xax i s_ t i t l e=" c l u s t e r "  , 
176 t i t l e_ f on t_s i z e=  25  
177 ) 
178 

179 re turn  f i g 3  ,  f i g 4  
180 

181 i f  __name__ == ’__main__ ’ : 
182 app . run_server ( debug=True , port =8012) 

Listing 5.5 A dashboard with more than one plot in a callback and additionally the Plotly 
go object 

The major implementation concepts in the code after the imports can be 
described as follows. In Line 15, the dashboard is initialized with the external 
style sheets from the dash bootstrap components. Lines 21 to 26 generate 
an artificial dataset based on a random normal distribution. A constant 
named COLORS is defined in Lines 30 to 32 with the colors mapped to 
numeric information, for the colors of individual point clusters later on in 
the visualization. The following code in Lines 34 to 40 creates clusters of 
data. 

The layout of the dashboard is built with Line 42 and the next ones, again 
based on splitting the display area with the HTML div element. This layout 
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strategy is quite similar to the one in the previous dashboard. There is a tab 
one with two rows and two columns (see Figure 5.4). The first row contains 
the dash core components for the user input like a drop-down menu and a 
slider while row two integrates the two diagrams in form of a scatter plot 
and a bar chart. Tab two just contains one row with two columns for two 
more diagrams. It may be noted that the widths are arranged differently in the 
second tab with an 8-to-4 ratio while in tab one we had an equal 6-to-6 ratio. 

There are three callback mechanisms in this dashboard code. The first 
one starts in Line 101 having one input as a color value from a drop-down 
menu and one output as a figure, that is, a diagram which is a histogram 
in this special case as we can see in the corresponding update function 
(Lines 105 to 111). Moreover, the figure uses a special update of its layout 
based on a template called "plotly_white" which was already described in the 
previous dashboard example. The second callback (Lines 113 to 116) with its 
corresponding update function (Lines 117 to 125) is responsible for reacting 
on the slider input, that is, if the user interactively changes a value by using 
the slider, this value is directly passed to the corresponding scatter plot as 
desired with a filter function implemented. This filter works on a copy of the 
Pandas dataframe (Lines 118 to 121). The filtered data is then given to the 
scatter plot while again the template is set to "plotly_white" (Line 124). 

The third callback starting in Line 127 with its update function starting in 
Line 131 is the most complex one compared to the previous two callbacks, 
including some new concepts and features. First of all, we see one input which 
stems from a graph called "graph_3" and which is passed to two outputs, that 
is, the "graph_3" itself and a different graph called "graph_4." This is the idea 
of allowing brushing and linking, meaning the selected data elements in a 
diagram can be the input for a different diagram which actually sends data 
between diagrams and not just "pure" inputs from dash core components in 
the form of sliders, menus, date pickers, and many more. Lines 132 to 145 
define the selected data and create a cluster variable "cluster_dff" based on 
an original variable "cluster_df." The updated diagram (Lines 147 to 154) is 
then based on this filtered data, that is, the selected data elements are actually 
color coded by using the defined colors from the COLORS constant in Lines 
30 to 32. In Lines 156 to 158, we set the layout of the diagram based on 
the template again, and we update the traces. To create the corresponding bar 
chart with which the scatter plot is linked we first need to count the number 
of selected points together with their category, that is, color. This is done in 
Lines 160 to 162 and stored in a variable "group_counts." Lines 164 to 170 
create the bar chart by a new concept which is based on the so-called graph 
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objects in Plotly. Those go objects have a different syntax than the pure Plotly 
express diagrams as we can see in the code lines. Finally, in Lines 172 to 177, 
the layout of the bar chart is updated by setting the height, the template, the 
title, the description on the x-axis, and additionally a font size to the value 25. 
In Line 179, both diagrams (the scatter plot and the bar chart) are returned 
which is inline with the corresponding callback mechanism in Lines 127 to 
130 (one input, two outputs). 

Exercises 

• Exercise 5.4.2.1: The selected data points in the scatter plot should also 
be represented in a new scatter plot, only showing the selected points. 

• Exercise 5.4.2.2: Reimplement the dashboard to let the selected data 
points appear in a highlighted yellow color. 

5.4.3 Dashboard in action 

In Figure 5.9, we see that tab two is currently selected. In this tab, we get the 
scenario of selecting data elements in a scatter plot which are then visualized 
in a bar chart by using their categories to group them. Moreover, the color of 
the data elements is integrated in both plots as some kind of visual linking or 
visual correspondence. 

Figure 5.9 Tab two is active in this dashboard showing a scatter plot with color coded data 
points and a linked bar chart in which the selected point clouds are visually encoded and 
categorized by their colors/categories. 
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Exercises 

• Exercise 5.4.3.1: Add a third tab in which we can see the distribution of 
the selected data elements from the scatter plot based on their occurrence 
on the x- and y-axis. 

• Exercise 5.4.3.2: Create a three-dimensional scatter plot and integrate a 
point selection mechanism. Discuss the usefulness of three-dimensional 
visualizations in information visualization. 

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 

In this next dashboard example, we would like to extend the previous ideas 
by a separate tab that supports the interactive and visual exploration of 
trivariate data by means of a color coded scatter plot. These points are 
embedded in the two-dimensional plane with an additional color coding 
that visually encodes the third attribute while the other two of the trivariate 
data are encoded in the x- and y-axes. The scatter plot allows brushing and 
linking and the selected data points are shown in a corresponding bar chart 
reflecting the data distribution of the selected point clouds separated in their 
color categories. Moreover, we require a third diagram that can display the 
density information of the selected point clouds in the scatter plot based 
on the powerful concept of heatmaps [30]. As illustrated in this even more 
complex dashboard example, the designer and implementor can build more 
and more features and functions, linked to each other, structured into feature 
and function groups by so-called tabs. However, it may be noted that we 
should not create too many of such tabs to avoid an information overflow and 
an increase of the cognitive efforts and a steep learning curve for our users. 

The section is organized as follows: In Section 5.5.1 we introduce a 
hand-drawn mockup showing the major features in this dashboard. We mainly 
focus on the visual components and the additional interaction techniques 
compared to the previously described dashboards. In Section 5.5.2, we look 
into the details of the corresponding Python code and describe the most 
important code components to get the dashboard running in its desired form. 
In the last part (Section 5.5.3), we show the visual outputs of the code after 
we let it run to give the readers an impression about how the dashboard will 
look like after executing the code. We recommend the readers of the book to 
test the code by themselves, modify it and check the new results. Extending 
the code step-by-step might help to understand the dashboard design and 
implementation on an experimental basis. 
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5.5.1 Scatter plot as a density heatmap 

The general idea of this dashboard is to create a visual way to explore the 
number of points in a scatter plot. This can be done by selecting point clouds 
and inspect their distribution in a bar chart. Although this is a good strategy 
we cannot see the spatial distribution of the points in the bar chart anymore. 
Hence, an improved solution would be another kind of scatter plot that shows 
the density information of the points which is in particular useful in cases in 
which many points are plotted on top of each other. But still we need the bar 
chart to see the categorical distribution which is given by the color coding 
in the scatter plot. The plots should be linked somehow by a brushing and 
linking feature, a visualization concept that can also be implemented with 
Dash, Plotly, and Python. Figure 5.10 illustrates how such a dashboard might 
look like. The reader might think about further extensions of the dashboard, 
for example with further diagrams, interactions, and even other datasets from 
real-world applications. 

Figure 5.10 A hand-drawn mockup of a dashboard with several linked visualizations: A 
scatter plot, a bar chart, and a density heatmap to visually explore the spatial distribution of 
the points in 2D (drawn by Sarah Clavadetscher). 
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Exercises 

• Exercise 5.5.1.1: Design a dashboard with six different visualization 
techniques showing the same dataset from six different perspectives. 

• Exercise 5.5.1.2: Which interactions are important for such a dashboard 
scenario and which of your diagrams should be linked and in 
what way? 

5.5.2 Coding details 

We describe two options to implement such a dashboard, the first one based 
on CSS (Listing 5.7) and the second one based on bootstrap (Listing 5.8). 
For the CSS version we need an external CSS file which can be found in 
Listing 5.6. Before we start discussing both of the code options we take a 
closer look into the CSS code and briefly describe its components. The CSS 
defines the padding, margin, and box sizing with fixed values (Lines 1 to 
5) for example. Nothing is mentioned about the HTML (Lines 7 and 8) in 
this specific example. However, the body sets the font family to Lato and 
sans-serif and the font weight to 400 while the margins left and right are set 
to 15 px respectively (Lines 10 to 15). The container is set to a margin of 0 
and a maximum width of 2000 pixels in Lines 17 to 20 while the header title 
is fixed to a top margin of 20 pixels and a bottom margin of 10 pixels (Lines 
22 to 25). Also the tabl main container gets a few additional settings which 
are the display type as grid and the grid template columns are set to lfr (Lines 
27 to 30). In the remaining definitions we set the graph to a maximum width 
of 100 %, the height to 700 pixels, and the margin top to 15 pixels (Lines 32 
to 36). Further definitions for the graph control set the maximum width to 50 
%, the margin to 0, and the margin top to 50 pixels (Lines 38 to 42). The main 
container for tab two is set to a grid display with grid template columns set to 
lfr, a column gap to 20 pixels, a row gap to 10 pixels, and a margin top to 50 
pixels (Lines 44 to 50). Graph 3 gets an additional grid column setting to 1/-2, 
while graph 5 is set to 1/-1 (Lines 52 to 58). Finally, graph 5 gets an additional 
feature for the label and the last child whose margin is set to 20 pixels (Lines 
60 to 62). This CSS example should illustrate that there are various options 
possible to guide the layout and the appearance of dashboard components. 
The reader is recommended to read further details in the corresponding CSS 
literature, mentioning all of the CSS features would go beyond the fence of 
this book. 



1

2 padding  :  0px  ;  
3 margin  :  0px  ;  
4 box  - s i z i n g :  border - box ;  
5 } 
6

7 html { 
8 } 
9

10 body { 
11 font  - f ami ly :  Lato ,  sans  - s e r i f ;  
12 font  - weight :  400 ;  
13 margin - l e f t : 15px ; 
14 margin  - r i g h t :  15px ;  
15 } 
16

17 .  conta ine r  {  
18 margin  :  0  auto  ;  
19 max- width :  2000px ;  
20 } 
21

22 . header  - - t i t l e  { 
23 margin - top : 20px ; 
24 margin - bottom : 10px ; 
25 } 
26

27 . tab1 - - main  - c onta ine r  { 
28 d i sp l ay  :  g r id  ;  
29 gr id  - template - columns :  1 f r  1 f r  ;  
30 } 
31

32 .  graph  {  
33 max- width :  100%;  
34 he ight :  700px ;  
35 margin - top : 15px ; 
36 } 
37

38 . graph - c on t r o l { 
39 max- width :  50%;  
40 margin  :  0  auto  ;  
41 margin - top : 50px ; 
42 } 
43

44 . tab2 - - main  - c onta ine r  { 
45 d i sp l ay  :  g r id  ;  
46 gr id  - template - columns :  1 f r  1 f r  1 f r  ;  
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47 column - gap : 20px ; 
48 row - gap : 10px ; 
49 margin - top : 50px ; 
50 } 
51 

52 . graph_3 { 
53 gr id  - column :  1  /  - 2 ;  
54 } 
55 

56 . graph_5 { 
57 gr id  - column :  1  /  - 1 ;  
58 } 
59 

60 . graph_5_separated  l a b e l  :  l a s t  - c h i l d  {  
61 margin  :  20px  
62 } 

Listing 5.6 The external CSS file for a dashboard 

Listing 5.7 starts again with the import of the relevant modules (Lines 1 
to 8). Most of them we have used already in the dashboard examples before. 
A new one in the code is: 

• helpers: This module allows to import data-related functionality like the 
generation of random data, the generation of cluster data, or the update 
of selected data. 

We define a color constant again in Lines 18 to 20 and use external 
stylesheets in Lines 22 to 25 which are included in Lines 28 and 29 when 
starting the app. The random data is generated in Line 31 with a seed of value 
8 and in Line 32 we create additional clusters. The layout of the dashboard 
is then defined starting in Line 34 with the HTML division element again 
that creates a header and another division element (Line 37). In this container 
we start building tabs (Line 38) with several subtabs organized as children. 
In tab 1 (Lines 39 to 69) we find again the HTML div elements to organize 
and layout the dash core components which are a dropdown menu (Lines 42 
to 51) and a graph which stands for a Plotly diagram (Lines 52 to 54). The 
variable className are used to attach the external CSS file features to the 
corresponding core components in the dashboard. A second subcomponent of 
tab 1 is built by the slider (Lines 57 to 63) and by another graph representing 
a Plotly diagram (Lines 64 to 66). As we can see in this example there 
are several className variables attached to the used components, always 
defining additional layouts and visual properties. 
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Tab 2 is coded in Lines 70 to 127 and is much more complex than the 
code for the functionality provided by tab 1. Again we split the features and 
functions by defining children of the tab environment and we use an HTML 
div element on the highest level in the tab (Line 72). Moreover, several other 
division elements are used to subcategorize and layout the tab’s content. We 
start with two graphs called graph_3 and graph_4 (Lines 73 to 76) followed 
by another division element containing even another division element with 
a label (Lines 79 to 81) and a drop-down menu (Lines 82 to 89). This is 
repeated again with further features (Lines 90 to 105) and again for a label 
and a RadioItems component (Lines 108 to 119). The last part builds a graph 
component for graph_5 (Lines 120 to 122). 

The following lines describe the callbacks starting with one that takes 
a color value as input and that outputs a figure identified by graph_1 
(Lines 130 to 133). The corresponding update function is placed below this 
callback (Lines 135 to 141). It is responsible for updating the histogram 
in a certain user-selected color value. The next callback (Lines 143 to 
146) takes a min_value as input and outputs a graph_2. The corresponding 
update function can be found in Lines 148 to 156. It is responsible for the 
filtering of the scatter plot based on the minimum value that is user-selected 
by a slider. Then, a more complex callback can be found in Lines 158 
to 160 that takes some graph-related input and outputs two other graphs. 
The idea in this callback is to allow inputs from a diagram and make its 
outputs in other diagrams. The update function is coded in Lines 162 to 202. 
Another callback (Lines 204 to 210) takes four values as inputs, 3 numbers 
and one graph-related property while it just outputs one new figure. The 
corresponding update function can be found below (Lines 212 to 228). The 
code is completed with the already known commands in Lines 230 to 231. 

1 from  dash  import  Dash , dcc , html , Input , Output 
2 import  p l o t l y  .  expre s s  as  px  
3 import  p l o t l y  .  graph_objects  as  go  
4 import  math 
5 from  he l p e r s  import  generate_random_data , 
6 generate_random_cluster_data  ,  
7 update_selected_data  
8 import  dash_bootstrap_components  as  dbc  
9 

10 #  New:  same  f u n c t i o n a l i t y  l i k e  prev ious  example  
11 #  but  t h i s  time  without  i n l i n e  s t y l e s  and  without  boots t rap  
12 # t h i s time much more CSS in main_dashboard4 . c s s 
13 



14 #  New:  Exporting  data  gene ra t i on  in  own  f unc t i on  
15

16 #  de f i n e  c l u s t e r  c o l o r s  
17

18 COLORS = { ’ 0 ’ : " red "  , 
19 ’ 1 ’ : " blue "  , 
20 ’ 2  ’  : " grey "} 
21

22 ex t e rna l_s ty l e s h e e t s  =  [  
23 " ’ https : // f on t s  . g oog l e ap i s . com/ cs s2 ? fami ly=  
24 Lato : wght@400;700& d i sp l ay=swap ’ " 
25 ] 
26

27 #  own  .  c s s  from  f o l d e r  a s s e t s  i n t e g r a t ed  
28 app = Dash (__name__, 
29 ex t e rna l_s ty l e s h e e t s=ex t e rna l_s ty l e s h e e t s  )  
30

31 df = generate_random_data ( seed=8)  
32 c lu s t e r_d f  =  generate_random_cluster_data ( )  
33

34 app .  l ayout  =  html . Div ( [ 
35 html . Header ( [ html .H1( "Dashboard 5" ) ] ,  
36 className="header  - - t i t l e  " ) ,  
37 html . Div ( [ 
38 dcc . Tabs ( id=" tabs "  ,  ch i l d r en =[  
39 dcc . Tab( l a b e l="Tab1" ,  ch i l d r en =[  
40 html . Div ( [ 
41 html . Div ( [ 
42 dcc . Dropdown( 
43 opt ions =[  ’ red  ’  , 
44 ’  green  ’  , 
45 ’ b lue  ’ ] ,  
46 value=’ red  ’  , 
47 id=’  c o l o r  ’  , 
48 mult i=False  ,  
49 className=  
50 "graph_1 - - dropdown 
51 graph - c on t r o l " ) ,  
52 dcc . Graph ( 
53 id="graph_1" , 
54 className="graph_1 graph" ) 
55 ] ,  className="graph - component" ) ,  
56 html . Div ( [ 
57 dcc  .  S l i d e r  (  
58 min=math .  f l o o r ( df [  ’ y ’ ] . min ( ) ) ,  
59 max=math .  c e i l ( d f [  ’ y ’ ] . max( ) ) ,  
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60 id="min_value" , 
61 className=  
62 "graph_2 - - s l i d e r 
63 graph - c on t r o l " ) ,  
64 dcc . Graph ( 
65 id="graph_2" , 
66 className="graph_2 graph" ) 
67 ]  ,  className="graph - component" ) 
68 ] ,  className="tab1 - - main - conta ine r " ) 
69 ]  ,  className="tab1" ) ,  
70 dcc  . Tab(  l a b e l="Tab2" , 
71 ch i l d r en =[  
72 html . Div ( [ 
73 html . Div ( dcc . Graph ( id="graph_3" ) ,  
74 className="graph_3" ) ,  
75 html . Div ( dcc . Graph ( id="graph_4" ) ,  
76 className="graph_4" ) ,  
77 html . Div ( 
78 html . Div ( [ 
79 dbc .  Label ( "Number  o f  bins : "  , 
80 html_for=  
81 "graph_5_nbins" ) ,  
82 dcc . Dropdown( 
83 opt ions =[ s t r ( i )  f o r  i in  
84 range (5 ,  100 ,  5) ] ,  
85 value=’ 40  ’  , 
86 id=’ graph_5_nbins ’ , 
87 mult i=Fal se  )  
88 ] )  ,  className=  
89 "graph_5 - - bins - dropdown" ) ,  
90 html . Div ( 
91 html . Div ( [ 
92 dbc  .  Label  (  
93 "Color  :  "  , 
94 html_for="graph_5_color" ) ,  
95 dcc . Dropdown( 
96 opt ions =[" V i r i d i s "  , 
97 "Magma" , 
98 "Hot"  , 
99 "GnBu" , 

100 "Greys"  ] ,  
101 value=’Hot  ’  , 
102 id=’ graph_5_color  ’  , 
103 mult i=Fal se  )  
104 ] )  ,  className=  
105 "graph_5 - - co lo r  - dropdown" ) ,  
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106

107 html . Div ( [ 
108 dbc  .  Label  (  
109 "Separated  f o r  Clus te r :  " , 
110 html_for=  
111 "graph_5_separated" ) ,  
112 dcc  .  RadioItems (  
113 opt ions =["Yes" , "No" ] ,  
114 value=’No ’  , 
115 id=’ graph_5_separated  ’  , 
116 className=  
117 "graph_5_separated" ) 
118 ] )  ,  className=  
119 "graph_5 - - s eparat ion  - rad io " ) ,  
120 html . Div ( 
121 dcc . Graph ( id="graph_5" ) ,  
122 className="graph_5" ) 
123 ]  ,  className=  
124 "tab2 - - main - conta ine r " ) 
125 ]  ,  className="tab2" ) 
126 ] )  
127 ]  ,  className="tabs  - content " ) 
128 ]  ,  className=" conta ine r " ) 
129

130 @app .  ca l l b a ck  (  
131 Output ( "graph_1" , " f i g u r e  " ) ,  
132 Input ( " c o l o r "  , " value " ) 
133 ) 
134

135 de f  update_graph_1 ( dropdown_value_color )  :  
136 f i g  =  px .  histogram ( df ,  
137 x="y"  , 
138 co lor_di sc re te_sequence=  
139 [ dropdown_value_color  ] )  
140 f i g  . update_layout ( template=" plot ly_white " ) 
141 re turn  f i g  
142

143 @app .  ca l l b a ck  (  
144 Output ( "graph_2" , " f i g u r e  " ) ,  
145 Input ( "min_value" , " value " ) 
146 ) 
147

148 de f  update_graph_2 ( min_value ) : 
149 i f  min_value : 
150 d f f  =  df [ df [  ’ y ’ ] > min_value ] 
151 e l s e  : 
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152 d f f  = df  
153

154 f i g  =  px .  s c a t t e r ( d f f  ,  x=’x ’ , y=’y ’ ) 
155 f i g  . update_layout ( template=" plot ly_white " ) 
156 re turn  f i g  
157

158 @app .  ca l l b a ck (Output ( "graph_3" , " f i g u r e " ) ,  
159 Output ( "graph_4" , " f i g u r e " ) ,  
160 Input ( "graph_3" , " re layoutData " ) )  
161

162 de f  update_graph_3_and_4( se lected_data ) : 
163 PLOT_HEIGHT = 400 
164

165 c l u s t e r_d f f  =  update_selected_data (  
166 c lu s t e r_d f=c luster_df  ,  
167 se l ected_data=se lected_data  )  
168

169 f i g 3  =  px .  s c a t t e r ( c lu s t e r_d f f  , 
170 x="X" , 
171 y="Y" , 
172 c o l o r=" c l u s t e r "  , 
173 color_discrete_map=COLORS, 
174 category_orders={" c l u s t e r " : 
175 [ "0" , "1" , "2" ] } )  
176

177 f i g 3  . update_layout (  
178 he ight=PLOT_HEIGHT, 
179 template="plot ly_white "  , 
180 co lo rax i s_showsca l e=Fal se  )  
181 f i g 3  . update_traces ( marker=d i c t ( s i z e =8) )  
182

183 group_counts  =  
184 c l u s t e r_d f f  
185 [ [ ’ c l u s t e r  ’ , ’X ’ ] ] .  groupby (  ’ c l u s t e r ’ ) . count ( )  
186

187 f i g 4  =  go .  Figure (  
188 data=[go  . Bar (  
189 x=group_counts  .  index  ,  
190 y=group_counts [  ’X ’ ] ,  
191 marker_color=  
192 [COLORS. get ( i ) f o r  i in  group_counts . index ]  
193 ) ] )  
194

195 f i g 4  . update_layout ( he ight=PLOT_HEIGHT,  
196 template="plot ly_white "  , 
197 t i t l e="<b>Counts  per  c l u s t e r </b>" , 
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198 xax i s_ t i t l e=" c l u s t e r "  , 
199 t i t l e_ f on t_s i z e=25  
200 ) 
201 

202 re turn  f i g 3  ,  f i g 4  
203 

204 @app .  ca l l b a ck  (  
205 Output ( "graph_5" , " f i g u r e " ) ,  
206 Input ( "graph_5_nbins" , " value " ) ,  
207 Input ( "graph_5_color"  , " value " ) ,  
208 Input ( "graph_5_separated"  , " value " ) ,  
209 Input ( "graph_3" , " re layoutData " ) ,  
210 ) 
211 

212 de f  update_graph_5 ( nbins ,  co lo r ,  separated ,  se l ected_data ) :  
213 c l u s t e r_d f f  =  update_selected_data (  
214 c lu s t e r_d f=c luster_df  ,  
215 se l ected_data=se lected_data )  
216 

217 f i g  =  px . density_heatmap (  
218 c lu s t e r_d f f  ,  
219 x="X" , 
220 y="Y" , 
221 nbinsx=in t ( nbins )  ,  
222 nbinsy=in t ( nbins )  ,  
223 co lor_cont inuous_sca le=co lo r  ,  
224 f a c e t_co l=None i f  separated  ==  "No" e l s e  " c l u s t e r "  , 
225 category_orders={" c l u s t e r " : [ "0" , "1" , "2" ] }  
226 ) 
227 f i g  . update_layout ( template=" plot ly_white " ) 
228 re turn  f i g  
229 

230 i f  __name__ == ’__main__ ’ : 
231 app . run_server ( debug=True ,  port =8014)  

Listing 5.7 Example of a dashboard without inline styles and without bootstrap but based 
on CSS 

Listing 5.8 shows a code example for the same features and functionality 
as in Listing 5.7 but this time CSS is not used but instead, we make use of 
bootstrap. The imports in Lines 1 to 9 are already familiar to the reader. In 
Line 17, we can find the first major difference compared to the code before 
which is the integration of the dash bootstrap components. After the data 
generation, color settings, and cluster definition (Lines 22 to 46), we code the 
layout of the dashboard based on HTML div elements but this time we use the 
inline style commands for the margin for example (Line 50). The structure of 



5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 205 

the code is similar to the code example before but this time we make use of 
rows and columns based on the dash bootstrap components (starting in Line 
59 and ending in Line 149 with the last column). The rest of the code is again 
defining callbacks and update functions, similar to the example code before. 

1 import  math 
2 

3 from  dash  import  Dash , dcc , html , Input , Output 
4 import  p l o t l y  .  expre s s  as  px  
5 import  p l o t l y  .  graph_objects  as  go  
6 import  numpy as np 
7 import  pandas  as  pd  
8 import  dash_bootstrap_components  as  dbc  
9 from  sk l e a rn  .  da ta s e t s  import  make_blobs 

10 

11 #  New:  Density  heatmap (2 columns )  as  th i rd  p lo t  on  tab  2  
12 #  with  c o l o r  and  r e s o l u t i o n  opt ions  
13 

14 #  New:  Everything  with  i n l i n e  s t y l e  and  boots t rap  ( no  CSS)  
15 

16 app = Dash (__name__, 
17 ex t e rna l_s ty l e s h e e t s =[dbc  .  themes  .BOOTSTRAP] ) 
18 

19 #  generate  random  normal  d i s t r i b u t e d  data  f o r  x  and  y  
20 #  and  s t o r e  i t  in  a  Pandas  DataFrame ( f o r p lo t 1 ,2 , and 5) 
21 

22 np . random . seed ( seed=8)  
23 

24 df = pd . DataFrame ({ ’ y ’ : 
25 

26 

27 ’ x  ’  : 
28 

29 

30 

31 #  de f i n e  c l u s t e r  c o l o r s  
32 

33 COLORS = { ’ 0 ’ : " red "  , 
34 ’ 1 ’ : " blue "  , 
35 ’ 2  ’  : " grey "} 
36 

np . random . normal (  l o c =0,  
s c a l e  =10,  
s i z e =1000) , 

np . random . normal (  l o c =10,  
s c a l e  =2,  
s i z e =1000) }) 

37 #  g ene r i c  c l u s t e r  data  (  f o r  p lo t  3  and  4)  
38 

39 X, y = make_blobs ( n_samples=7500 , 
40 c en t e r s =3,  
41 n_features=2,  



42 random_state=0,  
43 c lu s t e r_std  =0.75)  
44

45 c lu s t e r_d f  =  pd . DataFrame ( data=X,  columns=["X" , "Y" ] )  
46 c lu s t e r_d f [  ’ c l u s t e r  ’ ] = [ s t r ( i )  f o r  i in  y ]  
47

48 app .  l ayout  =  html . Div ( [ 
49 html . Div ( [ html .H1( "Dashboard 6" ) ] ,  
50 s t y l e={ ’ margin  ’ : ’ 10px 25px 25px 25px ’  }) ,  
51

52 html . Div ( [ 
53 dcc . Tabs ( id=" tabs "  , 
54 ch i l d r en =[  
55 dcc  . Tab(  
56 l a b e l=’Tab  One  ’  , 
57 ch i l d r en =[  
58 html . Div ( [ 
59 dbc .Row( [ 
60 dbc . Col ( [ dcc . Dropdown( 
61 opt ions =[  ’ red  ’  , 
62 ’  green  ’  , 
63 ’ b lue  ’ ] ,  
64 value=’ red  ’  , 
65 id=’  c o l o r  ’  , 
66 mult i=Fal se  )  
67 ]  ,  width=6)  ,  
68 dbc . Col ( [ 
69 dcc  .  S l i d e r  (  
70 min=math . f l o o r ( 
71 df [  ’ y ’ ] . min ( ) ) ,  
72 max=math .  c e i l (  
73 df [  ’ y ’ ] . max( ) ) ,  
74 id="min_value" ) 
75 ]  ,  width=6)  
76 ] )  ,  
77 dbc .Row( [ 
78 dbc . Col ( [ 
79 dcc . Graph ( id="graph_1" ) 
80 ]  ,  width=6)  ,  
81 dbc . Col ( [ 
82 dcc . Graph ( id="graph_2" ) 
83 ]  ,  width=6)  
84 ] )  
85 ]  ,  s t y l e={"margin"  : 
86 "100px 25px 25px 25px"})  ,  
87 ] 
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88

89 dcc  . Tab(  
90 l a b e l=’Tab Two ’ , 
91 id="tab_2_graphs" , 
92 ch i l d r en =[  
93 html . Div ( [ 
94 dbc .Row( [ 
95 dbc . Col ( [ 
96 dcc . Graph ( id="graph_3" ) 
97 ]  ,  width=8)  ,  
98 dbc . Col ( [ 
99 dcc . Graph ( id="graph_4" ) 

100 ]  ,  width=4)  
101 ] )  ,  
102 dbc .Row( [ 
103 dbc . Col ( html . Div ( [ 
104 dbc  .  Label  (  
105 "Number o f bins : " , 
106 html_for=  
107 "graph_5_nbins" ) ,  
108 dcc . Dropdown( opt ions= 
109 [ s t r ( i )  f o r  i in  
110 range (5 ,  100 ,  5) ] ,  
111 value=’ 40  ’  , 
112 id=’ graph_5_nbins ’ , 
113 mult i=Fal se  
114 ) 
115 ] ) , width={" s i z e  " : 3} , ) ,  
116 dbc . Col ( html . Div ( [ 
117 dbc .  Label ( "Color  :  "  , 
118 html_for=  
119 "graph_5_color" ) ,  
120 dcc . Dropdown( 
121 opt ions =[" V i r i d i s "  , 
122 "Magma" , 
123 "Hot"  , 
124 "GnBu" , 
125 "Greys"  ] ,  
126 value=’  V i r i d i s  ’  , 
127 id=’ graph_5_color  ’  , 
128 mult i=Fal se  )  
129 ] )  , width={" s i z e  " : 3 ,  
130 " o f f s e t " : 1} , ) ,  
131 dbc . Col ( html . Div ( [ 
132 dbc  .  Label  (  
133 "Separated  
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134

135 html_for=  
136 "graph_5_separated"  
137 ) ,  
138 dcc  .  RadioItems (  
139 opt ions =["Yes"  , 
140 "No" ] ,  
141 value=’No ’  , 
142 id= 
143 ’ graph_5_separated  ’ ) 
144 ] )  , width={" s i z e " : 3 ,  
145 " o f f s e t " : 1} ,  
146 ) 
147 ] )  ,  
148 dbc .Row( [ 
149 dbc . Col ( [ 
150 dcc . Graph ( 
151 id="graph_5" ) 
152 ] , width=12) 
153 ] )  
154 ]  ,  s t y l e={"margin" : 
155 "10px  25px  25px  25px" })  
156 ] )  ,  
157 ] )  
158 ]  ,  s t y l e={"margin" : "10px  25px  25px  25px"})  
159 ] )  
160

161 de f  update_selected_data ( se lected_data ) :  
162 i f  se l ected_data  i s  None or  
163 ( i s i n s t a n c e ( se lected_data  ,  d i c t ) and 
164 ’ xax i s . range [ 0 ]  ’  not  in  se l ected_data ) :  
165 c l u s t e r_d f f  =  c lu s t e r_d f  
166 e l s e  : 
167 c l u s t e r_d f f  =  
168 c lu s t e r_d f  [  
169 ( c lu s t e r_d f  [  ’X ’ ] >=  
170 se l ected_data . get (  ’ xax i s  . range [ 0 ]  ’ ) )  &  
171 ( c lu s t e r_d f  [  ’X ’ ] <=  
172 se l ected_data . get (  ’ xax i s  . range [ 1 ]  ’ ) )  &  
173 ( c lu s t e r_d f  [  ’Y ’ ] >=  
174 se l ected_data . get (  ’ yax i s  . range [ 0 ]  ’ ) )  &  
175 ( c lu s t e r_d f  [  ’Y ’ ] <=  
176 se l ected_data . get (  ’ yax i s  . range [ 1 ]  ’ ) ) ]  
177 re turn  c l u s t e r_d f f  
178

179 @app .  ca l l b a ck  (  
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180 Output ( "graph_1" , " f i g u r e " ) ,  
181 Input ( " c o l o r "  , " value " ) 
182 ) 
183

184 de f  update_graph_1 ( dropdown_value_color )  :  
185 f i g  =  px .  histogram ( df ,  
186 x="y"  , 
187 co lor_di sc re te_sequence=  
188 [  dropdown_value_color  ] )  
189 f i g  . update_layout ( template=" plot ly_white " ) 
190 re turn  f i g  
191

192 @app .  ca l l b a ck  (  
193 Output ( "graph_2" , " f i g u r e " ) ,  
194 Input ( "min_value" , " value " ) 
195 ) 
196 de f  update_graph_2 ( min_value ) : 
197

198 i f  min_value : 
199 d f f  =  df [ df [  ’ y ’ ] > min_value ] 
200 e l s e  : 
201 d f f  = df  
202

203 f i g  =  px .  s c a t t e r ( d f f  ,  x=’x ’ , y=’y ’ ) 
204 f i g  . update_layout ( template=" plot ly_white " ) 
205 re turn  f i g  
206

207

208 @app .  ca l l b a ck (Output ( "graph_3" , " f i g u r e " ) ,  
209 Output ( "graph_4" , " f i g u r e " ) ,  
210 Input ( "graph_3" , " re layoutData " ) )  
211 de f  update_graph_3_and_4( se lected_data ) : 
212

213 PLOT_HEIGHT = 400 
214

215 c l u s t e r_d f f  =  update_selected_data (  
216 se l ected_data=se lected_data  )  
217

218 f i g 3  =  px .  s c a t t e r ( c lu s t e r_d f f  , 
219 x="X" , 
220 y="Y" , 
221 c o l o r=" c l u s t e r "  , 
222 color_discrete_map=COLORS, 
223 category_orders=  
224 {" c l u s t e r  " : [ "0" , "1" , "2" ] } )  
225
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226

227 he ight=PLOT_HEIGHT, 
228 template="plot ly_white "  , 
229 co lo rax i s_showsca l e=Fal se  )  
230 f i g 3  . update_traces ( marker=d i c t ( s i z e =8) )  
231

232 group_counts  =  c l u s t e r_d f f  [  
233 [ ’ c l u s t e r  ’ , ’X ’ ] ] .  groupby (  ’ c l u s t e r ’ ) . count ( )  
234

235 f i g 4  =  go .  Figure (  
236 data=[go  . Bar (  
237 x=group_counts  .  index  ,  
238 y=group_counts [  ’X ’ ] ,  
239 marker_color=[  
240 COLORS. get ( i ) f o r  i in  group_counts .  index ]  
241 ) ] )  
242

243 f i g 4 . update_layout ( he ight=PLOT_HEIGHT, 
244 template="plot ly_white "  , 
245 t i t l e="<b>Counts  per  c l u s t e r </b>" , 
246 xax i s_ t i t l e=" c l u s t e r  "  , 
247 t i t l e_ f on t_s i z e=25  
248 ) 
249

250 re turn  f i g 3  ,  f i g 4  
251

252 @app .  ca l l b a ck  (  
253 Output ( "graph_5" , " f i g u r e " ) ,  
254 Input ( "graph_5_nbins" , " value " ) ,  
255 Input ( "graph_5_color"  , " value " ) ,  
256 Input ( "graph_5_separated"  , " value " ) ,  
257 Input ( "graph_3" , " re layoutData " ) ,  
258 ) 
259 de f  update_graph_5 ( nbins  ,  co lo r ,  separated  ,  se l ected_data ) :  
260 c l u s t e r_d f f  =  update_selected_data (  
261 se l ected_data=se lected_data  )  
262

263 f i g  =  px . density_heatmap (  
264 c lu s t e r_d f f  ,  
265 x="X" , 
266 y="Y" , 
267 nbinsx=in t ( nbins )  ,  
268 nbinsy=in t ( nbins )  ,  
269 co lor_cont inuous_sca le=co lo r  ,  
270 f a c e t_co l=None i f  separated  ==  "No" e l s e  " c l u s t e r " , 
271 category_orders={" c l u s t e r " : [ "0" , "1" , "2" ] }  
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272 ) 
273 f i g  . update_layout ( template=" plot ly_white " ) 
274 re turn  f i g  
275 

276 

277 i f  __name__ == ’__main__ ’ : 
278 app . run_server ( debug=True , port =8014) 

Listing 5.8 Example of a dashboard with more functionality like tabs and interactive 
visualizations as well as the inline style and bootstrap but no CSS 

Exercises 

• Exercise 5.5.2.1: Add one more row and one more column in the 
dashboard code. Do this in both code variants with CSS and bootstrap. 

• Exercise 5.5.2.2: Discuss which code variant is better. Take into account 
criteria like code understanding, code maintenance, code extension, and 
find some more criteria. 

5.5.3 Dashboard in action 

Figure 5.11 shows a screenshot of the dashboard after executing either the 
code example in Listing 5.7 or in Listing 5.8. We can see three partially 
overlapping point clusters in the upper left part colored in gray, red, and blue. 
The distribution of the selected points is shown in the corresponding bar chart 
in the upper right part indicating that the points seem to be equally distributed 
in the three categories. The lower part shows the spatial distribution of each 
point cloud as a density scatter plot in form of a heatmap-like diagram. The 
color coding visually encodes the density value, that is, the denser the point 
cloud the brighter the color. 

We hope that we could give some useful examples for creating 
dashboards. It may be noted that there are lots of variations in the design and 
implementation phases. Each designer and developer has his/her own ideas 
and concepts in mind, meaning this chapter just served as a starting point 
showing some fruitful ideas which build the basis for new dashboards to be 
created on. 
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Figure 5.11 Executing the dashboard code and activating tab 2 to interactively explore the 
trivariate data in a scatter plot linked to a bar chart and a density heatmap. 

Exercises 

• Exercise 5.5.3.1: Find your own dataset on the world wide web and 
design and implement your own dashboard to visually explore this data. 

• Exercise 5.5.3.2: For a user-defined (or selected) mathematical function 
f : R −→ R we would like to see the plot of the function as well 
as additional information like minima, maxima, gradient function, area 
under the function in a certain interval, and many more. Design and 
implement a dashboard to support a mathematician at these tasks. 



6 
Challenges and Limitations 

Although a dashboard is a good concept to build an interactive visualization 
tool [1, 50, 61, 155] for a multitude of data consisting of various data types 
we still find many challenges during the design and implementation, but also 
the execution phase. In this chapter we will take a look on several aspects 
that bring into play challenges during the design of a dashboard in Python. 
To mention a few but important ones we come across several perspectives 
like the design, implementation, the execution of the code, and the testing 
phase that can be done after the implementation or during it in an iterative 
way. As we learned before, the design includes the visual [232] and interface 
design [217] but also aspects like aesthetics [38]. The implementation phase 
takes into account the software [82], the development environment (IDE), 
the developers themselves [53, 54], the operating systems, but also the web 
browsers to let the users explore their data with an online version of the 
dashboard. In the execution phase we are confronted by aspects including the 
data, algorithms, interactions, visual, and perceptual scalability. In the testing 
phase we look into typical performance issues with respect to the runtime 
performance of the tool with all its algorithms but also the user performance 
when giving tasks to solve with the dashboard. The user performance includes 
the users themselves but also aspects regarding usability, user-friendliness as 
well as user evaluation with and without eye tracking [44, 87, 123]. 

This chapter is organized as follows: In Section 6.1, we will 
discuss the major challenges when designing a user interface as well as 
visualization techniques, typically following well-defined rules to focus on 
user-friendliness, efficiency, and effectiveness for data exploration tasks. 
Implementation challenges can occur in various forms, in particular when 
using the programming language Python, Dash, and Plotly. Those are also 
based on the operating systems, development environments, but also on web 
browsers in cases a dashboard should be run online (Section 6.2). When 
using the dashboard, that is, after execution of the implemented source 

213 



214 Challenges and Limitations 

code we can run into problems concerning data, algorithmic, visual, or 
perceptual scalability aspects, typically those challenges are detected when 
the dashboard is ready to be used, that is, during its runtime (Section 6.3). We 
also take a look into performance issues that can come from the software but 
also from the users’ perspectives which could be evaluated in controlled or 
uncontrolled user studies with and without eye tracking (Section 6.4). 

6.1 Design Issues 

When creating a dashboard for interactive visualizations [13] we have to 
focus on at least two design perspectives. The first one comes from the 
graphical user interface (GUI) with all its components like sliders, menus, 
buttons, text fields, and so on, presented in a suitable and user-friendly layout. 
The second one is based on the visualization techniques with its integrated 
interaction features. The visualizations in use depend on the datasets with 
their data types on the one hand and the tasks the users have in mind for which 
they plan to use the visualization tool to explore and analyze the data. On top 
of this we have to deal with a multitude of interaction techniques, in each 
individual visualization technique but also connecting two or more of them 
in some kind of brushing and linking concept. Apart from just looking at the 
standard design rules for the user interface and the visualization techniques 
we have to keep in mind that there also exist aesthetic rules that focus on 
readability aspects but also on beauty [15, 38]. Those two aspects stand 
in some kind of trade-off criterion, that is, the nicer a visualization is the 
less readable it becomes, the more readable a visualization is for solving 
exploration tasks the less beautiful it is. 

In this section, we start our discussion on limitations and challenges 
by looking into interface design issues. This can be done by at least two 
perspectives, the static components and their layouts but also dynamic 
interface features like interactions that are possible with buttons, sliders, 
drop-down menus, date pickers, and the like (Section 6.1.1). Moreover, we 
continue by taking into account the problems that occur when thinking about 
a visual design including the visualization techniques with the interactions 
in each individual visualization technique but also in a linked manner 
(Section 6.1.2). Visualization tools do not only focus on providing interactive 
and readable visualization techniques, they also take into account aesthetics 
in the sense of creating a visually attractive and beautiful appearance of both, 
the interface and the visualization techniques, however there is some kind of 
trade-off between both concepts (Section 6.1.3). 
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6.1.1 Interface design challenges 

One of the first steps when creating a dashboard for an interactive 
visualization tool is to think about the required components, where they are 
located in the display, which size each individual one will get, if they are 
static or dynamically modifiable, or which additional features they will be 
equipped with. This task is quite challenging and can come with a multitude 
of problems, typically asking the designers to only focus on a limited number 
of components and either throw away the others or allow to show them 
on users’ demands. What we actually do is to generate a list of possible 
component candidates that all have some kind of priority depending on a 
certain task to be solved. Hence, the design of the user interface is linked 
to the tasks at hand that the final dashboard should support. We should try 
to come up with a solution based on a principle including the must haves, 
should haves, and could haves, creating a three-stage categorization of all 
the features that are required in the dashboard. However, in most situations, 
we only concentrate on the most important ones. Hence each dashboard 
only provides a limited number of functions that are useful for solving 
the tasks. 

Designing an interface can be done individually or in a group of team 
members, but actually no matter who the designers are, we have to consult 
the end users. They are the ones who are our customers and who might buy 
our final product. We can create the most impressive dashboard ever with 
a multitude of components, functions, features, interactions, visualizations, 
and so on, linked together and put into a good layout. However, the users 
decide if the created product is really useful and meets their needs. Hence, 
also here we need already some kind of user evaluation [152] that uncovers 
the bottlenecks, drawbacks, and design flaws on which an improvement phase 
should be based. Typical tasks in a user study related to the interface design 
focus on the major ingredients like the buttons, sliders, and menus and their 
interplay as well as the layout of the GUI to decide whether the locations of 
the individual components are well chosen. However, this is already a difficult 
problem since the design space with all of its parameters cannot be covered in 
one individual user experiment. Many more have to be conducted, each one 
varying and checking only a few parameters as independent variables into the 
study while the created dataset from the study results can already be quite 
large needing another kind of analysis or visualization tool to find insights in 
the study data, in particular, if spatiotemporal eye tracking data [44] or verbal 
feedback is also recorded as a dependent variable in the study. 
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Exercises 

• Exercise 6.1.1.1: Imagine your dashboard should have 20 user interface 
components. How do you decide which of them are the most important 
ones and where do you place them in the layout? 

• Exercise 6.1.1.2: Which general options do you have to support 20 
visualization techniques in a dashboard? 

6.1.2 Visual design challenges 

The design of the visualization techniques is based on a composition of 
visual variables like color, size, position, orientation, texture, and so on. The 
biggest challenge here is to decide which ones are appropriate to generate 
a visual solution for the tasks at hand. Even if the visual variables seem 
to be good candidates there is no guarantee that there are better visual 
variable combinations; however, we have already learned some visualization 
techniques (Section 2.2.1) that are beneficial for certain data types and 
user tasks. Just in case we are planning to design our own visualization 
techniques we need to check if those are better candidates than existing ones, 
otherwise the users might not be confident with the chosen visualizations, 
in particular, if they are visualization experts who know better examples. 
In case we have created a new visualization technique we can compare the 
usefulness, efficiency, and effectiveness by checking it against a ground-truth 
visualization technique in a comparative study, based on performance 
measures but also based on user performances in a user experiment with 
typical user tasks. However, this evaluation strategy can cost some valuable 
time during the design phase, but actually, it is necessary to avoid design flaws 
later on that we were not aware of without having asked the users. 

The visual design (as already discussed in Section 2.4.1) also focuses on 
further more complex principles which are based on the composition of the 
visual variables but which also take into account user tasks. Those are chart 
junk, the lie factor, as well as visual clutter. Creating a visualization technique 
that takes into account all three of them at the same time is a challenging task, 
in particular, if line-based diagrams have to be drawn, we mostly run into a 
visual clutter problem [202] for larger datasets. In many visual situations, we 
should exploit the Gestalt laws [147] to follow a good visual design since they 
consist of a rule set with natural aspects related to how we interpret a diagram 
as a whole and not as composed of its parts which contradicts somehow the 
aforementioned idea of composing visualization techniques by a number of 
visual variables. Here, we have to take into account that the composition is 
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the visual encoding while the Gestalt laws work into the other direction, i.e. 
as a visual decoding. As a challenge, we have to find a visual encoding that 
is powerful enough to serve as a visual decoding, that is, an interpretation of 
the visual patterns to visually explore the encoded data. 

Exercises 

• Exercise 6.1.2.1: Find diagrams on the web that contain visual design 
flaws and discuss how to get rid of them. 

• Exercise 6.1.2.2: Discuss whether chart junk, the lie factor, or visual 
clutter is bad for a designed diagram. 

6.1.3 Aesthetics criteria 

Since we design and develop a visualization tool for exploring and 
analyzing data, we first look into the aspect of readability of the created 
visualizations and the usefulness of the integrated interaction techniques. 
This plays the major role and has the highest priority when building such 
an interactive tool for data exploration. However, a second, but actually 
equally important role is played by aesthetics that makes a visualization tool 
attractive to the viewers, that is, aesthetically appealing [38] with a certain 
value [237]. The biggest challenge in this area comes from the fact that 
both aspects stand in some kind of trade-off behavior, that is, increasing the 
readability typically happens at the cost of less aesthetics while increasing 
the aesthetics in the sense of making a user interface and the integrated 
visualization technique more beautiful comes at the cost of less readability 
(see Figure 6.1). 

Measuring readability can be done by user performance measures but 
measuring aesthetics is a much more difficult problem since each user might 
understand aesthetics differently and has a different feeling for aesthetics. 
However, there are some general rules to measure aesthetics of a visualization 
given by facts that focus on symmetry or certain shapes that might be 
liked more than others like curved diagrams which might be preferred 
over noncurved diagrams [15]. But still, it is quite challenging to input 
a visualization in an aesthetics computing algorithm that comes up with 
a value for the degree of aesthetics in the visualization. One idea in this 
direction might be a regression problem solved with a neural network that is 
trained to compute a percentage value from a given repertoire of visualization 
candidates, however the model for such a neural network has to be trained 
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Figure 6.1 Readability and aesthetics cannot be integrated into a diagram at the same time 
to a full extent. There is always some kind of trade-off situation. 

on labeled data while the labels come again from an original aesthetics 
judgment of viewers, a fact that brings us back to the old problem that 
users are required to judge the aesthetics of a visualization before a machine 
can do it. 

Exercises 

• Exercise 6.1.3.1: Which diagrams do you think are nicer: Two-dimen-
sional versus three-dimensional ones, or Cartesian versus radial ones, 
colored versus gray-scale ones, static versus animated ones? 

• Exercise 6.1.3.2: What makes a diagram look aesthetically appealing? 
What makes a graphical user interface look aesthetically appealing? 
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6.2 Implementation Challenges 

After the design phase, we have to start to implement the created dashboard. 
This will again bring into play many challenges, but this time related to 
programming issues. The design is more flexible since it is based on humans’ 
creativity while following some well-defined rules. The implementation 
phase, on the other hand, shows up as being more restricted due to the 
fact that we have to rely on the features that a programming language and 
its libraries offer [82]. In some situations the desired functionality might 
not be available as an already implemented function, hence we either have 
to adjust our design or we need profound knowledge to implement the 
desired feature by ourselves. Whatever way we decide to take, there are 
various other challenges that come our way, related to the bottlenecks of the 
integrated development environment, the underlying operating system, the 
internet connection and power of the servers, in case the dashboard has to be 
deployed as an online version, or the web browsers that come in a multitude 
of forms with different versions. Moreover, the developers themselves play 
a crucial role and are a challenge by themselves, typically based on their 
experience levels. 

In this section, we first look into challenges related to software and 
libraries that come across our way (Section 6.2.1). A second stage is 
to understand which bottlenecks and drawbacks integrated development 
environments can have, avoiding to successfully build a dashboard 
(Section 6.2.2). The developers should choose the software, libraries, and 
IDEs not only on the dashboard design, but also on their experience levels, 
otherwise they might fail in the implementation phase (Section 6.2.3). Also, 
the operating systems can mean a problem during the implementation, 
in particular, if some developers have different operating systems causing 
inconsistencies during the implementation (Section 6.2.4). If we plan to 
provide our dashboard as an online visualization tool, we must make it 
available online, that is, on a server which typically requires some knowledge 
about web-based development (Section 6.2.5). Even if we were successful 
in all the aforementioned stages, the dashboard might still have problems 
when opening it which might be due to the fact that the web browsers on 
the users’ sides have a number of awkward features that let the dashboards 
look differently for each user and even some features cannot be executed as 
expected (Section 6.2.6). 
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6.2.1 Software and libraries 

The biggest issue when using existing libraries, for example graphics 
and visualization libraries, comes from the fact that they only provide a 
limited functionality. This has to be understood first to make it applicable 
to the problems at hand which turns out to be a challenging task for a 
developer. Moreover, it quickly happens that the desired functionality is 
not available as a function or method in the library, hence there remain 
two options in this case: Either reduce the dashboard by the desired 
functionality or implement the functionality by oneself which again requires 
more profound knowledge in programming than is needed when just relying 
on the functions given by a library. A good example for such library 
challenges in the field of visualization is given by the feature of brushing 
and linking in multiple coordinated views [200] which requires that two 
or more diagrams are interactively connected. In Plotly Express, it is quite 
easy to create interactive diagrams based on certain data types, however 
linking two or more of them is a tedious task. Actually, the standard 
diagrams are not connected to each other, they just work in isolation, each 
one separately. 

Not only the visualization libraries may cause such problems when 
individually developing a dashboard for a specific application. Also other 
libraries related to data analytics, for example, popular algorithmic concepts 
like clustering, dimensionality reduction [235], or data mining [98] can cause 
such negative issues. For example, if we wish to modify an algorithm to 
make it applicable to a specific dataset while the algorithm has to take 
into account some more parameters than specified in the function given 
by the library, we run into the problem of transforming the algorithm, 
which turns out to be a challenging task. Moreover, external software could 
be a solution, in particular, for data preprocessing but it is questionable 
if the external software is able to work with the data format and which 
kind of new data is produced. Even more, we cannot easily call an 
external software from the dashboard, we have to guarantee that this 
software is accessible and puts the preprocessed data to the right place 
to make it loadable into the visualization tool. An example would be a 
statistics software that is given a table with numeric values and that returns 
classical values related to the median, standard deviation, or variance, just to 
mention a few. 
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Exercises 

• Exercise 6.2.1.1: Integrate two Plotly diagrams into a dashboard and 
connect them. This could be a scatter plot on which an axis interval is 
selected while the distribution of the points in the selected interval is 
shown as a histogram. 

• Exercise 6.2.1.2: Integrate a drop-down menu in a dashboard that lets 
you execute external software, for example, a statistics tool. 

6.2.2 Integrated development environments (IDEs) 

There is a list of integrated development environments (Section 3.2.3) for 
implementing Python code for interactive visualization tools and dashboards. 
Some of the prominent and oftentimes recommended ones are PyCharm and 
Spyder, however, there are some others. Although one IDE might be powerful 
and user-friendly for one developer it might be the opposite effect for the 
other developer. The rule of thumb is that everybody should work with an 
environment that meets one’s needs best in order to efficiently and effectively 
create the dashboard. The biggest problem with IDEs is the fact that they 
are overloaded with functions and features that it is hard for the newcomer 
to immediately understand all the provided functions and features. There 
is definitely a learning curve for the newcomers; hence it is recommended 
to start with one IDE and try to implement and debug the code with the 
provided IDE features, but once the IDE is fully understood, it might be a 
good advice to, at least, try another IDE. However, this can be a challenge 
since the developer has already created some kind of mental map for the one 
IDE, and it is quite difficult, but not impossible, to also learn the functions 
and features provided by another IDE. 

If the developer is working alone during the dashboard design and 
implementation it is actually not a big issue to change the IDE from 
time to time. However, if the developer is working in a larger project, 
collaborating with other developers it can be challenging to just take the IDE 
that one desires. Here, the developer is typically provided an environment 
with which all others are familiar to avoid ugly side effects during the 
implementation phase. One powerful but also feature-overloaded tool is 
GitHub (Section 3.2.4), providing additional functions like a version control 
working in a common code repository to see the changes and modifications of 
all developers in the code, to archive those changes, and in the worst case, to 
rebuild an earlier running version of the code. Those code repositories provide 
a wealth of additional tools today, to make software development a successful 
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and time-efficient endeavor since software development can cost a lot of 
money and might include various other cost-intensive resources. Finally, if 
we work in a more or less isolated fashion to create a very simple dashboard 
for our own purposes, a simple Jupyter Notebook might be the best option 
to avoid many of the aforementioned challenges during the implementation 
phase. 

Exercises 

• Exercise 6.2.2.1: Try several IDEs to implement a dashboard. Make a 
table of desired features and briefly explain which IDE is best for your 
purposes. Which one would you recommend to a newcomer, which one 
to a professional Python developer? 

• Exercise 6.2.2.2: Start a dashboard project in GitHub and get familiar 
with the functions and features there. 

6.2.3 Developers and experience levels 

In some situations the designed dashboards, we are planning to implement 
are already quite complex, meaning the developers need a lot of experience 
to integrate all the functionality and visual outputs in the right place. For 
this, we need a profound knowledge of Dash, Python, and Plotly with all 
its ingredients like Dash core components, Dash HTML components, CSS, 
and the callback mechanism. Some developers might have experience in 
programming but come from a different programming language than Python, 
and hence, they have to adjust to the new situation. However, from the already 
taught lectures in programming, visualization, and dashboard design [52] we 
know that the learning curve is not that steep, even for nonexperts or even 
newcomers in the field. It is a good advice to start with simple dashboards 
with just a handful of functions and features and extend such an interactive 
tool step-by-step, with an increasing number of functions and also with a 
higher complexity level related to the callback mechanisms and the way 
the visualizations and algorithmic analyses play together. In particular, the 
linking between visualizations can be a challenging programming task for 
developers who are nonexperts. 

Working in a collaborative way for a larger and more complex project 
can bring into play even more challenges since each developer might have a 
different level of experience, stemming from another kind of programming 
language and programming paradigm. Hence, it is advised to find a suitable 
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consensus before starting with the implementation in order to make the 
interactive visualization tool in form of a dashboard to a success. After the 
design phase, the involved developers should discuss the ingredients and 
who will take the different roles during the implementation phase. This 
strategy can actually be communicated and controlled by using GitHub for 
collaborative development. Moreover, version control is helpful to see what 
the others did and to step back to an earlier version in case a code iteration 
was not as successful as desired. But still, finding a programming consensus 
between many developers themselves can be a challenge since not all of them 
might be open to adjust to a given or new programming situation. 

Exercises 

• Exercise 6.2.3.1: Discuss the programming languages you are familiar 
with. What are the benefits and drawbacks of those programming 
languages? 

• Exercise 6.2.3.2: How would you start a collaboration with other 
developers in order to create a successful tool based on a more or less 
effortless development phase? 

6.2.4 Operating systems 

Actually, we consider the most popular operating systems here which are 
Windows, Linux, and MacOS. Programming in Python works quite smoothly 
under all operating systems. But still, there are some negative issues we 
should be aware of. Those are, for example, that some libraries might behave 
differently on each operating system, hence it is recommended to test the 
dashboard not only for the available web browser (Section 6.2.6) but even 
under the available operating systems. Otherwise, the divergence issue can 
lead to unwanted side effects. Which operating system is best cannot be 
answered easily. It depends on the camp of developers. One camp is more 
Windows-related, the other one tends to use Linux. Even others, but less, 
use MacOS, but still, the recommendation is to not adapt to another operating 
system but try to get it running under your operating system, even if you think 
that the software might fail or misbehave under other operating systems. 

The whole thing might get tricky if the software is implemented in a 
collaborative way with various developers, all having different operating 
systems on their machines. This problem here could be that the code does 
not really work on one machine or the other since the operating system in use 
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is some kind of mixture of systems. Also, from the installation perspective it 
can be harder to get the integrated development environments (IDEs) running 
on MacOS, which we learned from our own experiences in various student 
courses. However, in the end, we got the IDEs running on each platform, 
but to be honest it costed some more time in some situations. When using 
several IDEs and several operating systems, the cross-platform effect can 
cause serious challenges for the programmer, even more in situations in which 
third-party tools or libraries are integrated as well. The more ingredients 
we include in this implementation cocktail, the more bottlenecks, we will 
typically be confronted with, however, there is always a solution, the only 
issue here is that it might be a waste of time to get it running in the end. 

Exercises 

• Exercise 6.2.4.1: Make a literature research on the web to find the 
positive and negative issues when comparing Windows and Linux 
operating systems with respect to dashboard design. 

• Exercise 6.2.4.2: Compare a Windows and a Linux operating system 
with respect to the visual appearance and interactive functionality of the 
same dashboard code. Can you find any differences? 

6.2.5 Internet connection and servers 

If we plan to provide a web-based dashboard solution, that is, an interactive 
visualization tool that is accessible from everywhere on earth [61] where we 
have a stable internet connection and a web browser, we come across further 
challenges apart from those with respect to the design rules and the standard 
implementation for a local tool, running only on one’s own machine. One 
big issue can be real-time data that has to be accessed in regular time rates, 
like every second, every minute, or every hour. This demands for a server 
that provides fast access to such data in order to keep up with the changing 
data over time. In particular, if further advanced algorithms run they have to 
update the data in an algorithmically processed form to provide solutions to 
tasks at hand, for example, a clustering, grouping, or ordering of a dataset 
that is changing over time. If the internet connection is unstable or slow with 
respect to transmitted data our algorithms and our visualizations might run 
into problems, that is, not showing the least update or not running smoothly 
over time. It may be noted that the dashboard itself might run on a different 
server than the data that the dashboard is processing and visually depicting. 
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This is a suitable scenario, but we have to be aware of the fact that if one of 
the servers is not running properly, the dashboard itself might suffer. In case 
the data server is not working, we might come up with a local (not up-to-date) 
dataset that is shown for the users instead of the real-time data until the data 
server is back again. If the dashboard server is not working this might be the 
bigger evil. 

From an implementation and resources perspective, we definitely need 
more knowledge about programming aspects, in particular, web-based 
programming, requiring to understand client-server architectures. However, 
Dash, Python, and Plotly are powerful concepts that take away the burden 
from us in this implementation direction. The Heroku server (Section 3.4.1) 
was a good alternative until November 28, 2022. After that date, the service 
was not offered for free anymore but instead a low-cost alternative replaced 
the originally very user-friendly concept. Consequently, the costs for setting 
up a server or deploying the dashboard on a server can become a serious 
issue, in particular, if the dashboard has to run over longer time periods or 
if the data itself with which the dashboard is working has to be provided on 
the same server. There is definitely a limit in terms of dataset sizes as well 
as algorithmic operations that run on such a server. As a recommendation, it 
can be a good advice to not care about the server issue when designing and 
implementing a dashboard as a priority aspect, but concentrate on the server 
aspect later on. If the dashboard is running locally, getting it running remotely 
on the web is an option for which we can find various solutions. 

Exercises 

• Exercise 6.2.5.1: What are the typical challenges when building 
dashboards for a real-time dataset from an internet connection and server 
perspective? 

• Exercise 6.2.5.2: Search for possible server solutions when creating 
web-based interactive visualization tools for real-time data. 

6.2.6 Web browsers 

Since dashboards can be regarded as some kind of web pages, we can open 
them in a standard web browser. There are several of them, all having slightly 
different visual appearances, hence, it is a wise idea to check the appearance 
of a dashboard at least on the standard most popular web browsers. Most of 
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the browsers even have a variety of built-in tools and functionality, which 
can cause troubles with respect to working with an interactive visualization 
tool in the form of a dashboard. Sometimes, the loading of the built-in tools 
causes performance issues, hence the slow performance is not caused by the 
dashboard but actually comes from the browser side which is sometimes hard 
to locate. These effects might even be blamed on older browser versions, 
consequently, a good idea is to have running the latest version of a web 
browser. This also comes with the problem that even if the dashboard ran 
a few weeks ago, it might show up completely differently today which can 
be caused by other browser versions. It is a good advice to keep up with 
the browser versions and to check the dashboard from time to time on the 
newer versions to understand if the functionality and features are still the 
same as a time ago. If this is not the case, the dashboard developers might 
have to adapt the code to get back the old visual appearance, interaction 
techniques, and algorithmic functions. Popular web browsers are, by the 
way, Google Chrome, Firefox, Microsoft Edge, Opera, or Safari, just to 
mention a few. 

An extension to the code brings into play modifications in the 
functionality, as a consequence, it is a good advice to test whether the 
dashboard is still running in the most popular web browser or if this 
extension has a bad impact on some of the features. Apart from the features 
such an extension can also have an impact on the performance, sometimes 
the extension itself is the bottleneck, for example, when changing from 
one library to another one with a similar functionality or when actually 
implementing a new algorithm that has not been tested before. But typically, 
this issue is caused by the algorithm itself, not by the web browser. The 
biggest challenge is mostly to locate the cause of the performance issues. 
Is it coming from the code itself or is it coming from the web browser or even 
a library that causes trouble when used together with a specific algorithmic 
or visual feature. A good advice to reduce browser issues can be to clean 
the cache which might still contain some problematic data. Moreover, the 
cookies might bring additional challenges into play. Take a closer look at all 
browser-related aspects in case the dashboard is not showing up properly. 
Before digging too deep into one browser start the dashboard with several 
popular browsers to see if it is running at all, or if the code itself might be the 
problem. 
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Exercises 

• Exercise 6.2.6.1: Check your own dashboard in the most popular web 
browsers like Mozilla Firefox, Google Chrome, Microsoft Edge, Opera, 
and Safari. Can you find any differences between the web browsers? 

• Exercise 6.2.6.2: Inspect the diagrams in your dashboard and if they 
are visually depicted differently in each of the aforementioned web 
browsers. 

6.3 Challenges during runtime 

We can design and implement the best dashboard ever, but on a piece of 
paper, everything is fine while running the code in the end can uncover 
serious problems which we have not been aware of before. Such challenges 
during runtime can come in a variety of forms including data aspects with 
respect to the data format, size, or structure, the algorithmic processes [59, 62] 
with runtime complexities or NP-completeness [102], the visual output with 
a combination of visual variables that are not suitable to show the entire 
or a large part of a dataset, and even perceptual issues ranging from color 
blindness problems, over visual acuity issues, to display limitations asking 
the question whether a dashboard should run on a small-scale smart phone, 
a medium-scale laptop or computer display, or a large-scale high-resolution 
powerwall [210]. All of those aspects also include interaction techniques that 
might suffer from one or several of those negative issues. In some situations, 
we cannot even avoid such problems, for example, if the data has a size with 
which our designed and implemented dashboard cannot keep up. This means 
we definitely run into data, algorithmic, visual, and perceptual challenges, 
no matter what we do. Consequently, the data itself has to be filtered or 
preprocessed in a way to allow a dashboard to efficiently and effectively show 
it to our users. 

In this section, we discuss the challenges with respect to data scalability 
(Section 6.3.1) focusing on the data format, the structure, and the size. 
Moreover, we take a look at typical algorithmic issues that can happen 
when processing and transforming data (Section 6.3.2), for example, when 
there is no efficient algorithm for solving a problem optimally, but rather 
heuristically. From a visualization perspective it makes sense to think about 
the number of data elements that can be visually depicted on the display, 
that is, visual scalability asks the question whether a dashboard can keep up 
with visualizing the increasing size of data (Section 6.3.3). Also of interest 
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are challenges related to human perception, for example, taking into account 
how large our display can be or how many colors can be perceived and 
distinguished (Section 6.3.4). All of those challenges play a big role during 
the design and implementation processes of an interactive visualization tool, 
also in the specific case of a dashboard. 

6.3.1 Data scalability 

With today’s technologies, we are able to measure, record, and store vast 
amounts of data in a multitude of data formats spread over several files and 
databases. Such typically heterogeneous data is mostly related to the term 
big data [24] including data aspects like volume, velocity, veracity, value, 
variability, and variety. These aspects bring into play various challenges 
with which an interactive visualization or visual analytics tool has to keep 
up to be a powerful, efficient, and effective candidate for data analysis, 
data exploration, and data visualization. The data scalability aspect does not 
only include the size of the data (as mentioned earlier) but also the rate of 
change, that is, in a dynamically updated dataset, a real-time dataset, we must 
be aware of the problem that the data can change at infinitesimally small 
changing rates, ranging from milliseconds, to seconds, to minutes, to hours, 
to days, and so on, or even at much smaller rates. This time granularity is 
oftentimes aggregated into another coarser granularity to let the data analysis 
in form of algorithms keep up with the incoming data chunks from time to 
time. However, the question is whether the algorithm is still able to compute 
the results fast enough, that is, faster than the data is coming in; otherwise, 
the results might already be outdated. 

Another big issue with data scalability is the fact about how many data 
sources can be combined and how much data has to be stored after such a 
combination. Moreover, when combining or linking data sources we typically 
need some kind of unique key with which we can start connecting the data 
sources in a reliable way. The linking of the data sources cannot happen 
during runtime since this will always cost valuable resources that are needed 
elsewhere. In most of the situations, the linking of data sources can be done 
as a preprocess, that is, before or even during working with the dashboard 
while the results of such a preprocessing are stored to use them later after 
the preprocessing is finished. Once the results are computed, and the data are 
available, we do not need the same preprocessing again, hence the computing 
time is not wasted again. However, a big problem here is that we typically do 
not know what and how to preprocess the data. The users can actually request 
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any kind of data transformation and we do not know the behavior of most of 
our users beforehand. 

Exercises 

• Exercise 6.3.1.1: What is the biggest dataset that your dashboard can 
work with? If you do not have your own dashboard, check the dataset 
size for the dashboard examples in Chapter 5. 

• Exercise 6.3.1.2: Discuss the problem for analyzing and visualizing 
real-time data. 

6.3.2 Algorithmic scalability 

Algorithms play a crucial role in data analysis and also in visualization. 
They have an impact on the interactive responsiveness of a visualization 
tool. The challenge is to do not let the users wait too long for a solution, 
but, in some cases, a fast solution cannot be computed that easily. It is not 
an issue of the programming style it is more an issue of the algorithmic 
problem itself. There are some algorithms that are said to be NP-hard [163] 
which actually means that an optimal solution cannot be computed in a few 
steps. We have to wait for a long time to get the optimum, even if we had a 
machine with a lot of computing power. If the problem instance is increased 
a little bit, our powerful machine cannot keep up with the little bit bigger 
problem again. Those algorithmic problems are also called intractable for the 
computer [102]. Hence, we are typically not interested in an optimum but we 
more or less try to compute a good but not optimal solution which is generated 
by a heuristical approach which has a much lower runtime complexity. 

Sometimes we cannot judge the runtime of an algorithm in terms of 
processing steps, for example as a mathematical function f with input n and 
output f(n). But we can still get an impression about the runtime complexity 
based on the dataset size as input parameter. The idea here is to execute 
the program several times for a given dataset size and increase the dataset 
sizes step-by-step. We can measure the time taken to process the dataset of a 
certain size for any kind of included algorithm or even the rendering routine 
for a visualization technique. Finally, we plot the dataset size on the average 
runtime which gives some kind of mathematical function with a certain shape. 
This shape of the underlying curve can be used to judge which function the 
runtime is following. There are several options (maybe with some outliers) 
but the general curve can uncover the runtime behavior of a linear, quadratic, 
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cubic, or even exponential function. Asking now the question about a still 
suitable dataset size for which the dashboard is algorithmically scalable can 
be answered by looking at the y-axis and the corresponding runtime while 
following the line back to the curve, then reading the dataset size value from 
the x-axis. But still, a challenge with the performance measure can be that 
an algorithm will behave differently each time for the same dataset, hence, 
the only way to create such a runtime plot is by averaging, but again each 
individual run can differ from the average curve a lot, hence, such a prediction 
might not be very reliable. 

Exercises 

• Exercise 6.3.2.1: Read a dataset with your dashboard and measure the 
time it takes until the data is read and parsed. Increase the dataset size 
by copying it 2, 3, 4, 5, and 10 times and append the copies. Measure 
the times for all those dataset sizes and create a line plot for showing the 
performance of the reading and parsing algorithm. 

• Exercise 6.3.2.2: Is there a difference in terms of performances for the 
diagrams integrated into the dashboards in Chapter 5? 

6.3.3 Visual scalability 

The number of data elements to be displayed can grow to an immense 
amount, too many to show all of them at the same time in a nonaggregated 
fashion. This is actually the challenge, to show as much data as possible but 
still be able to detect visual patterns and anomalies in the data. Once the data 
reaches a certain size we cannot simply show all data elements, but we might 
show them in an aggregated fashion or we could allow filtering techniques 
to get rid of the irrelevant ones. This comes with the problem that we do 
not know what to aggregate or how to filter the data since we typically do 
not know where the most important data elements are located in the dataset 
or what the aggregation level will be. Hence, we need some interaction 
techniques [258] that help to rapidly modify our views and the data portions 
in the display [55]. Such a step-by-step exploration can be helpful but still 
for really huge data sources, interaction alone cannot help to get rid of the 
visual scalability issue. Each visualization tool reaches its limits at a certain 
dataset size, at this stage more advanced algorithms are required to reduce the 
amount of data to the most needed one, for example, dimensionality reduction 
techniques [94] project high-dimensional data to a lower dimension with the 
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goal to preserve the structure in the data somehow. Moreover, also clustering 
approaches can help to derive patterns in the data that we would not detect 
otherwise. Hence, clustering can also add some benefit to visual scalability, 
just by restructuring, grouping, and ordering the data. 

Visual clutter is the state in which too many data elements are shown 
or even their disorganization leads to performance issues when solving 
certain tasks [202]. This effect is happening in most of the situations we 
have visual scalability issues. Even if a visualization technique is powerful 
for a small number of elements, it can be useless for a growing number 
of data elements. Then, we might consider another more visually scalable 
visualization technique for the same kind of data but in a more scalable 
fashion. A famous example can be found for graph or network data for which 
node-link diagrams exist, but those only visually scale for around 20 vertices 
with a few edges. Matrix-like visualizations are better in this case since they 
can be scaled down to pixel size, even if they do not allow path-related tasks 
anymore [106]. Such a situation can be found in many application fields, 
typically based on a certain data type, like network data as we mentioned 
before. The idea is to provide a visualization technique from a repertoire of 
many techniques for the same type of data but one that supports task solutions 
in data exploration for as many tasks as possible, however, the task with the 
highest priority should be under the supported tasks in any case. 

Exercises 

• Exercise 6.3.3.1: Imagine you had a network consisting of your friends 
and the relations they have with each other. How would you visualize 
such a dataset, and how visually scalable is your technique? 

• Exercise 6.3.3.2: For histograms, we can include really many data 
values, but at some point, they also reach a limit in terms of visual 
scalability. What can we do with the shown data values to get a more 
scalable approach? 

6.3.4 Perceptual scalability 

Even if the data, algorithmic, and visual scalability issues are not existing, 
for example, because the data itself is not big and has a clear structure, we 
might still run into the problem of perceptual scalability. This can happen if 
we have to deal with a multitude of colors, for categorical data, for example, 
too many that the visual observer cannot distinguish them anymore to reliably 
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and efficiently solve comparison tasks. Although there is a huge number of 
different colors, only a few of them can be visually separated, for example, 
in a scenario in which data elements use similar colors and are visually 
represented at locations in the display that are far apart [245, 246]. This 
effect can also be seen in the famous Rubik cube illusion. Color is not the 
only challenge here, also the size of the display itself can be a problem. If 
the display is too small we might not be able to read the visual depiction of 
a dataset, if the display is too large, our visual field is not large enough to 
see all visual elements in one view. Also, the human observer can suffer from 
visual deficiencies or color blindness, not being able to distinguish colors or 
read text in any acceptable font. Hence, wearing glasses or contact lenses can 
be a solution, but they will not solve all visual deficiency problems for the 
spectator. In the end, we need an advanced user study [48, 57, 60] to find 
out which negative perceptual issues exist for each individual person who is 
using our dashboard. 

Also, effects related to the visual memory can be regarded as perceptual 
issues. For example, we can only remember a limited number of objects in 
our mind [229]. This is important for comparison tasks if we have to identify 
visual patterns first, remember them in our short term memory, to compare 
them with other visual patterns in a visual scene that can be found at a 
different location in the display. To detect differences between two visual 
scenes, we typically run into the problem called change blindness [115], 
that is, the visual observers cannot easily find such differences unless they 
really pop out from the display like in a preattentive kind of visual depiction. 
Moreover, if we do not pay attention to a visual scene, typically a dynamic 
scene, it can be quite hard to later tell an experimenter whether a visual pattern 
was present or not. Examples for such perceptual effects are demonstrated in 
the door study or the invisible gorilla [105, 218]. An object or a person is 
not recognized due to the fact that the attention was paid to something else 
because a task related to that had to be answered. In visualization this can be 
a problem for animated diagrams [233] in which we might miss important 
information because we paid attention to something else. 

Exercises 

• Exercise 6.3.4.1: Discuss the design of a dashboard with respect 
to differently large displays, that is, a small-scale smart phone, a 
medium-scale computer monitor, and a large-scale powerwall display. 
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• Exercise 6.3.4.2: What would you modify in your standard dashboard 
design to make it usable by visually impaired people who have issues 
with visual deficiency, visual acuity, and color blindness? 

6.4 Testing Challenges 

After the design phase and either during or after the implementation phase, 
we have to test the created dashboard. This is important to find out whether 
the functionality and features are available but also if those have performance 
issues with respect to the integrated algorithms but also with respect to the 
response time, accuracy, or visual attention behavior of real users. All of 
those insights can help to detect design and implementation flaws to find 
possible ways to improve the dashboard. Hence, it might be the better but 
also more expensive solution to do the testing from time to time and not only 
in the end after the final product is ready. Testing costs a lot of time and 
can even lead to a complete redesign and, consequently, a reimplementation 
of the entire or at least parts of the visualization tool. Testing is challenging 
since it should include real users as well as software-related parameters and 
environments [39, 82], for example, in case of a dashboard accessible online 
we must test the web browsers in use as well as operating systems and the 
like. Moreover, the users themselves can stem from any part in the world with 
different cultures, languages, signage, symbols, reading habits, and many 
more. In some situations, we cannot even work with real data since the data in 
use is quite small and artificially making it larger is not a real-world situation. 

In this section, we will take a look at some aspects to be tested in a 
dashboard before it can be made available to real users. We discuss online 
accessibility, that is, how the data can be accessed, processed, and displayed 
in a remote web-based approach (Section 6.4.1). The runtime performance 
also stands in focus of testing. A low performance of the algorithms can cause 
delays in the interaction, and hence, the user-friendliness can suffer from that 
(Section 6.4.2). Finally, we take into account, the human users with their 
perceptual and visual abilities when using the dashboard. This brings into 
play again some challenges with respect to user evaluation, controlled versus 
uncontrolled, with or without eye tracking, small-scale versus crowdsourcing, 
or many other user study aspects (Section 6.4.3). 
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6.4.1 Online accessibility 

Testing if users can access our dashboard online is a challenging task since 
we do not know anything about their operating systems, environments, or 
web browsers. What we can do is to record user feedback and track their 
clicking behavior while at the same time storing information about their 
personal details as well as the system properties they are working in. If we 
had enough information about many users, we might hypothesize why certain 
users with a certain system property are not confident with the dashboard 
while others are. This kind of user evaluation can provide valuable insights 
about possible negative issues that our online users have. This perspective 
is on the global dashboard but even locally we might find out if certain 
components like drop-down menus, sliders, or text fields as well as Plotly 
diagrams are working based on user behavior, however, this is some kind 
of uncontrolled study setting since we do not know much about our study 
participants. A large number of users can, on the other hand, give already 
some intuition about what might be a problematic feature worth investigating 
and improving in the future. 

Further issues can be the location on earth that might have an impact on 
the accessibility. Typically, the internet is not that fast everywhere and this can 
be problematic when large datasets have to be transmitted to show results for 
a server side exploration for example. The speed of the connection can have 
an influence on users’ behavior data, that is, when we track mouse behavior, 
for example, the mouse movement might be dependent on the interactive 
responsiveness of the dashboard, a fact that we actually do not see but what 
we might request from our users as qualitative feedback. For most of the 
dashboards, the data that is shown in the dashboard is not stored on the 
dashboard server but rather on a data server. This is a good idea, but on the 
other hand, we are dependent on two servers for which reliable connections 
are required to keep the online accessibility criterion stable. If the data server 
does not provide the data fast enough, we have to react somehow on this 
problem by maybe only showing data elements at a more coarse-grained 
temporal rate. On the other hand, this might lead to missing data elements 
which is actually not the problem of the dashboard itself but rather of the 
data server that is not providing the required data chunks fast enough for our 
algorithmic or visual explorations. 



6.4 Testing Challenges 235 

Exercises 

• Exercise 6.4.1.1: Test the explained dashboards in Chapter 5 from 
different locations, for example, from home and from your office at a 
company. 

• Exercise 6.4.1.2: Add a text field as a dash core component in each of the 
dashboards in Chapter 5 and request feedback from your online users. 
How can you find insights in such qualitative user feedback. 

6.4.2 Runtime performance 

As already mentioned earlier, a dashboard can be very simple with only a few 
functions, but on the other hand, it can be a quite complex system consisting 
of algorithms and interactive visualizations like in a visual analytics tool that 
is typically based on the data stemming from a specific application area and 
on users’ tasks at hand. In the most complex scenario, it is hard to judge 
whether it is scalable or not, that is, arguing about runtime performance can 
be a challenging task since we do not have clear input and output parameters 
used in asymptotic runtime functions. This means we have to let run our tool 
several times for the same dataset and measure the time taken. By increasing 
the dataset sizes, we can estimate what the runtime performance will be 
depending on the dataset sizes. This strategy is a good idea but due to the 
fact that our dashboard is already quite complex containing various functions 
and features, the measured runtimes will always reflect the total times. Hence, 
it is a wise idea to test the individual components separately. This means each 
algorithm has to be tested for the growing dataset sizes to find out where in the 
code the bottlenecks are located. This is a tedious task, as already mentioned, 
there are various algorithms in a complex dashboard if this is understood as 
a visual analytics system. However, this is the only way to understand the 
runtimes in a real scenario. It may be noted that the best way to explore the 
runtime performance over dataset sizes is by plotting them in a line chart to 
see whether there is a linear, quadratic, cubic, or exponential behavior, for 
example. 

Again, the testing is not only dependent on the algorithms themselves. 
As we have seen in Section 6.4.1, the internet connection might also play a 
crucial role in such runtimes, that is, how fast an algorithm can access its 
data to process it. For example, having an unstructured dataset with various 
data elements and requesting a clustering algorithm that runs server side can 
compute a clustering solution for us, but we never know whether the runtime 
is purely based on the algorithm; instead, the biggest part of the runtime can 
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also be caused by transmitting data. Hence, it is a wise idea to first understand 
the functioning of an algorithm and how and where it is implemented, that is, 
where it is running: client or server side. In some situations, the dataset is 
already too large to wait for an algorithm to terminate. In this scenario it is 
good to work in the opposite direction, that is, reducing the size of the data 
instead of increasing it, and then computing the runtimes. This can give us a 
natural limitation for the largest dataset that can be processed, transformed, 
and analyzed by our dashboard. 

Exercises 

• Exercise 6.4.2.1: Implement different versions of a sorting algorithm and 
integrate that into a dashboard. Measure the runtime performances under 
different circumstances like operating system, web browser, or the fact 
that the algorithm runs on the server or on the client side. 

• Exercise 6.4.2.2: Which options do we have when the runtime of an 
algorithm integrated into a dashboard is too high, that is, leading to a 
noninteractively responsive tool? Discuss! 

6.4.3 User performance and evaluation 

The best idea to test a dashboard for its functionality and features is to ask real 
users. Each of the users has a different experience, ranging from novices to 
real experts. Moreover, the users can have a set of properties that hinder them 
more or less to properly use the dashboard, for example the visual acuity, 
visual deficiency, color blindness, or other visually or physically impaired 
issues can occur that all have an impact on the user performance [25]. 
To measure the usefulness of a dashboard we have a quite long list of 
points, however each of the measured data has to be evaluated, statistically, 
algorithmically, or visually to find insights in the user behavior to get an 
impression about possible design flaws in the dashboard, either with respect 
to the user interface, to the visualization techniques, to the interactions, or 
to the algorithmic concepts. Possible metrics under investigation are the 
following: 

• Qualitative feedback 

– Verbal: Spoken words can be a good source for finding the 
bottlenecks and design flaws in a dashboard. They should be 
recorded during a study to not disturb the study participant [129]. 
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– Gestures: Gestures can show if a person is confident with a 
dashboard or not, based on the movements of the fingers, hands, 
and arms [162]. 

– Facial expressions: The face is an important means to derive 
insights from the confidence of a dashboard user. Smiling, 
laughing, crying, and the like, all of them carry some meaning 
worth exploring [7]. 

– Textual feedback: Written words are probably the clearest way to 
get feedback in a qualitative form [219]; however, they are not that 
fine-grained as verbal, gesture, or facial expression feedback. 

• Quantitative feedback 

– Response times: Giving study participants concrete tasks can also 
be a good strategy to measure and record how long it takes until 
they come up with an answer. The longer it takes the less clear the 
task might have been [60]. 

– Error rates: A similar measure might be the error rates but this 
time we do not record the time taken but more whether the task 
was answered correctly, or sometimes even to what extent it was 
answered correctly, given as some kind of correctness probability. 

• Spatio-temporal user behavior 

– Eye movements: Recording the movement of the eyes by using 
an eye tracking device is a powerful idea, but the recorded eye 
movement data have a spatiotemporal nature [40, 44] which makes 
a statistical analysis quite difficult. We could even generate derived 
metrics from this kind of data like saccade lengths/orientations, 
fixation durations, AOIs, time to first fixation, and many 
more [87, 123]. 

– Mouse movements/clicks: Tracking the movements of the 
computer mouse and additional mouse operations like clicks, 
drag-and-drop, hover, and the like can be an additional 
spatiotemporal measure to the eye movements. Mouse data is 
easier to collect since each user is equipped with one, eye trackers 
are not that prominent and typically much more expensive. 

– Body movements: Another useful measure is given by the body 
movements, for example, in a virtual environment (VR), immersive 
analytics, or large-display environment [210] in which users can 
freely walk around. 
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• Physiological measures 

– Blood pressure: Blood values or properties can give insights in 
how stressed a study participant is [136]. However, measuring such 
values requires a medical assistant and makes the study setup much 
more complicated and ethically problematic. 

– Pupil dilation: Eye tracking devices can also measure pupil 
dilations [14] that give insights into a variety of aspects, one of 
which is how much attention is focused on a certain display area. 

– Galvanic skin response: Another useful measure is the galvanic 
skin response [131] that might provide insights into further 
body-related aspects, for example, what the stress level or the sport 
activity level is. 

These are just a few important measurements about user behavior but 
there are many more. The biggest challenge here is the evaluation, and 
analysis of all the recorded user data, that is, finding insights in such study 
data to improve the dashboard design, its implementation, and finally, the 
usefulness and user-friendliness. 

Exercises 

• Exercise 6.4.3.1: Ask 20 people to use one of your created dashboards. 
Give them a concrete task and measure the time taken and the error 
rate. Ask them for verbal feedback. Which insights can you find in 
the recorded user study data to improve your dashboard? Are there any 
design flaws? 

• Exercise 6.4.3.2: What are the challenges before, during, or after a user 
study? Discuss! 



7 
Conclusion 

In this book, we described a combination of concepts to help design 
and implement dashboards for interactive visualization tools. The book is 
actually written for bachelor and master students with not much experience 
in information visualization, visual analytics, interaction design, Python 
programming, and dashboard implementation. The book is organized in a 
way to be studied in its completeness, step-by-step, but also as a chapter-wise 
introduction to one or more concepts. We also added various references to 
other literature that is related to one or more of the topics in the book. In many 
cases, we recommend to read further details in the corresponding literature 
since our book cannot cover all topics and close all gaps in all of the mighty 
concepts with a focus on visualization, interaction, design, and programming. 
To repeat the content of each subsection, we provided a few exercises at 
the end of each subsection. The topic of the exercises always has a strong 
relation to the subsection in which they can be found. For questions about 
exercise understanding or their solution, as well as topics from the book, we 
recommend the reader to send emails to the book authors. 

We started the book with introducing and motivating the general idea of 
using dashboards for interactive visualization for exploratory data analysis, 
for example. Moreover, we also mentioned the use of algorithms to handle 
datasets consisting of several data types. A dashboard can be understood 
as a webpage containing a graphical user interface that is composed of 
the interface following more or less prominent interface design rules as 
well as visualization techniques following visual design rules. Only their 
combination and interplay can create a powerful and interactive visualization 
tool, together with advanced, efficient, and effective algorithms that are 
powerful enough to process static or dynamic (even real-time) data with 
the best user experience possible. Before starting with the implementation 
phase to get a promising dashboard result, we also have to take into 
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account a prototyping step to create a mockup on which the implementors’ 
programming steps are based. 

There are various ways to build an interactive visualization or visual 
analytics tool. In this book, we describe one possible way to get a solution, 
without mentioning that this solution is the best one. Python, Dash, and Plotly 
are powerful concepts to get a dashboard running, but we have to know 
how those ingredients have to be put together, which is a tedious task for 
someone who has not much programming experience and maybe also not 
much visualization experience. We showed how to install the most required 
tools, and we even gave some insights into the deployment of the running 
dashboard, that is, uploading the code to a server to make it accessible online, 
from everywhere on the earth where we have an internet connection and 
a web browser. For the newcomers we even introduced the programming 
language Python step-by-step, the advanced programmer can just jump to the 
next chapter in the book. To tap the full potential of the book, the reader is 
recommended to study the dashboard examples with hand-drawn mockups, 
Python code, and a screenshot of the running example, as well as detailed 
explanations of the Python code. Finally, we conclude the book by looking 
into challenges and limitations. 
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