

Dashboard Design

Michael Burch and Marco Schmid

RIVER PUBLISHERS SERIES IN COMPUTING AND
INFORMATION SCIENCE AND TECHNOLOGY

Series Editors:

K.C. CHEN SANDEEP SHUKLA
National Taiwan University, Taipei, Taiwan Virginia Tech, USA
University of South Florida, USA Indian Institute of Technology Kanpur, India

The “River Publishers Series in Computing and Information Science and Technology” covers
research which ushers the 21st Century into an Internet and multimedia era. Networking
suggests transportation of such multimedia contents among nodes in communication and/or
computer networks, to facilitate the ultimate Internet.

Theory, technologies, protocols and standards, applications/services, practice and imple-
mentation of wired/wireless networking are all within the scope of this series. Based on
network and communication science, we further extend the scope for 21st Century life through
the knowledge in machine learning, embedded systems, cognitive science, pattern recognition,
quantum/biological/molecular computation and information processing, user behaviors and
interface, and applications across healthcare and society.

Books published in the series include research monographs, edited volumes, handbooks
and textbooks. The books provide professionals, researchers, educators, and advanced students
in the field with an invaluable insight into the latest research and developments.

Topics included in the series are as follows:-

• Artificial intelligence
• Cognitive Science and Brian Science
• Communication/Computer Networking Technologies and Applications
• Computation and Information Processing
• Computer Architectures
• Computer networks
• Computer Science
• Embedded Systems
• Evolutionary computation
• Information Modelling
• Information Theory
• Machine Intelligence
• Neural computing and machine learning
• Parallel and Distributed Systems
• Programming Languages
• Reconfigurable Computing
• Research Informatics
• Soft computing techniques
• Software Development
• Software Engineering
• Software Maintenance

For a list of other books in this series, visit www.riverpublishers.com

http://www.riverpublishers.com

Dashboard Design

Michael Burch

Marco Schmid

River Publishers

Published 2023 by River Publishers
River Publishers

Alsbjergvej 10, 9260 Gistrup, Denmark
www.riverpublishers.com

Distributed exclusively by Routledge
605 Third Avenue, New York, NY 10017, USA

4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

Dashboard Design/ADS Software / by Michael Burch, Marco Schmid.

© 2023 River Publishers. All rights reserved. No part of this publication may
be reproduced, stored in a retrieval systems, or transmitted in any form or by
any means, mechanical, photocopying, recording or otherwise, without prior
written permission of the publishers.

Routledge is an imprint of the Taylor & Francis Group, an informa
business

ISBN 978-87-7004-004-4 (hardback)
ISBN 978-87-7004-066-2 (paperback)
ISBN 978-10-0382-395-7 (online)
ISBN 978-10-3265-730-1 (master ebook)

While every effort is made to provide dependable information, the
publisher, authors, and editors cannot be held responsible for any errors
or omissions.

http://www.riverpublishers.com

Contents

Preface xi

List of Figures xv

List of Tables xxi

List of Abbreviations/Acronyms xxiii

1 Introduction 1
1.1 A Visualization Pipeline 2
1.2 Human Users and Tasks . 5
1.3 Programming Directions and Solutions 8

2 Creating Powerful Dashboards 13
2.1 Data Handling . 15

2.1.1 Data types . 16
2.1.2 Data reading and parsing 20
2.1.3 Data storage . 22
2.1.4 Data preprocessing 23
2.1.5 Data transformation 24

2.2 Visualization and Visual Analytics 26
2.2.1 Visual variables . 28
2.2.2 Perception and cognition 30
2.2.3 The role of the human users 35
2.2.4 Algorithmic concepts 36

2.3 Examples of Visualization Techniques 38
2.3.1 Visualizing simple data types 39
2.3.2 Graph/network visualization 42
2.3.3 Hierarchy visualization 44
2.3.4 Multivariate data visualization 46
2.3.5 Trajectory visualization 48

v

vi Contents

2.3.6 Text visualization 49
2.4 Design and Prototyping . 51

2.4.1 Visual design rules 53
2.4.2 No-goes and bad smells 55
2.4.3 Interface design rules 58
2.4.4 Creating a graphical user interface 61

2.5 Interaction . 63
2.5.1 Interaction categories 64
2.5.2 Interaction modalities 66
2.5.3 Displays . 68
2.5.4 Multiple coordinated views 70

3 Python, Dash, Plotly, and More 73
3.1 General Background Information 74

3.1.1 Python . 75
3.1.2 Dash . 76
3.1.3 Plotly and Plotly Express 77
3.1.4 Further ingredients and concepts 80

3.2 Installations and Options 82
3.2.1 Interactive mode 83
3.2.2 Jupyter Notebook mode 84
3.2.3 Integrated development environment (IDE) 85
3.2.4 GitHub . 87

3.3 Interplay between Dash, Plotly, and Python 88
3.3.1 Reading and parsing in a dashboard 90
3.3.2 Data transformation in a dashboard 91
3.3.3 Dash core components 93
3.3.4 Dash HTML components 94
3.3.5 Cascading style sheets (CSS) 96
3.3.6 Plotly in a dashboard 97
3.3.7 Callbacks . 98

3.4 Deploying . 101
3.4.1 Heroku . 102
3.4.2 International users 103
3.4.3 Online user evaluation 105
3.4.4 Benefits and drawbacks of online dashboards 106

4 Coding in Python 109
4.1 Expressions . 110

Contents vii

4.1.1 Arithmetic expressions 111
4.1.2 Relational expressions 113
4.1.3 Boolean or logical expressions 114
4.1.4 Bitwise expressions 116
4.1.5 Mixed expressions 116

4.2 Data Types and Variables 118
4.2.1 Basic data types . 118
4.2.2 Composite data types 120
4.2.3 Conversion between data types 123
4.2.4 Variables . 124
4.2.5 Constants . 125

4.3 Strings and Characters . 126
4.3.1 String methods . 126
4.3.2 ASCII code and table 128
4.3.3 User input and regular expressions 129
4.3.4 Comments . 131

4.4 Conditionals and Exceptions 132
4.4.1 If and else . 133
4.4.2 Pattern matching 134
4.4.3 Exceptions . 135

4.5 Loops . 136
4.5.1 Definite iteration 137
4.5.2 Indefinite iteration 139
4.5.3 Nested loops . 140

4.6 Functions . 141
4.6.1 Defining a function 141
4.6.2 Calling a function 142
4.6.3 Nesting of functions 144
4.6.4 Local and global variables 145

4.7 More Complex Functions 146
4.7.1 Recursion versus tail recursion 146
4.7.2 Higher-order functions 149
4.7.3 Lambda expressions 150

4.8 Reading and Writing Data 151
4.8.1 User input . 152
4.8.2 Reading from a file 153
4.8.3 Writing on a file 155
4.8.4 Reading web content 156

4.9 Object-Oriented Programming 157

viii Contents

4.9.1 Classes . 157
4.9.2 Objects and instances 159
4.9.3 Methods . 160
4.9.4 Inheritance . 161

5 Dashboard Examples 163
5.1 Modifying the Color in a Diagram 164

5.1.1 A simple dashboard with a histogram 165
5.1.2 Coding details . 166
5.1.3 Dashboard in action 169

5.2 Two Diagrams, Bootstrap, and Value Filter 170
5.2.1 Extension with a scatter plot and slider 171
5.2.2 Coding details . 172
5.2.3 Dashboard in action 176

5.3 Dashboard with Tabs, CSS, and Plotly Template 177
5.3.1 Histogram and scatter plot separately 177
5.3.2 Coding details . 179
5.3.3 Dashboard in action 184

5.4 Inputs from a Plot and Plotly Go 185
5.4.1 Selecting point clouds for an overview 185
5.4.2 Coding details . 187
5.4.3 Dashboard in action 193

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 194
5.5.1 Scatter plot as a density heatmap 195
5.5.2 Coding details . 196
5.5.3 Dashboard in action 211

6 Challenges and Limitations 213
6.1 Design Issues . 214

6.1.1 Interface design challenges 215
6.1.2 Visual design challenges 216
6.1.3 Aesthetics criteria 217

6.2 Implementation Challenges 219
6.2.1 Software and libraries 220
6.2.2 Integrated development environments (IDEs) 221
6.2.3 Developers and experience levels 222
6.2.4 Operating systems 223
6.2.5 Internet connection and servers 224
6.2.6 Web browsers . 225

Contents ix

6.3 Challenges during runtime 227
6.3.1 Data scalability . 228
6.3.2 Algorithmic scalability 229
6.3.3 Visual scalability 230
6.3.4 Perceptual scalability 231

6.4 Testing Challenges . 233
6.4.1 Online accessibility 234
6.4.2 Runtime performance 235
6.4.3 User performance and evaluation 236

7 Conclusion 239

References 241

Index 269

About the Authors 289

https://taylorandfrancis.com

Preface

Teaching students in the field of visualization comes with a list of challenging
tasks since most of them have neither an experience in computer and data
science, data structures and algorithms, programming and web development,
nor in visual and interface design, as well as many related disciplines such
as user experience and usability, perception and cognition, or evaluation
with and without eye tracking. However, all of those fields are required to
design and implement a real-world visualization tool, maybe in the form of
a dashboard, with the goal to support users with their tasks at hand. Leaving
away one of the fields during education creates a gap in the entire data-to-
visualization mapping process that it becomes hard to understand the field of
visualization in its entirety. Consequently, it is important to work through all
of those involved fields in a course, at least a bit of everything at the desire of
and tailored to each student, to bring the students to an experience level from
which they can understand the connections in the field of visualization. The
biggest challenge in a visualization course is to take into account the students’
different basic skills and experience levels to make the course interesting,
motivating, and successful for everybody participating in it.

This book makes an attempt to bring together the many related fields
in visualization, providing many examples that were taught over the years
while giving courses in visualization, visual analytics, graphical user interface
and dashboard design, user evaluation and eye tracking, or programming
languages as well as web development. Visualization is that powerful so
students can get inspired by many application scenarios that it can focus
on, being it in fields like social networking, sports, software engineering,
gaming, eye tracking, medicine, nature, or just looking at data from statistics
or data science, to mention a few. Visual output can be interpreted, discussed,
improved, disseminated, communicated to, or shared with others, and builds
the basis for many further discussions among the students which provides a
good way to give feedback, always targeting the goal of educating them and
to make them learn about this interesting but challenging field. Visualization
is some kind of practical discipline that allows to apply the theoretic concepts

xi

xii Preface

learned during the course, in order to solve a given realistic data science
problem. Such problems can be manifold, stemming from various application
domains, oftentimes with a link to a real-world data problem that students
are aware of or even more actively involved in, for example, in the context
of a company or industrial partner for which the students currently work
or for which they have worked a while ago. Such a link can build a bridge
between a theoretical course in visualization and a more realistic real-world
data example, creating some kind of synergy effect.

The book is organized in a way to explain aspects from all of the involved
fields, in a structured way, while at the same time giving plenty of real-world
visual examples as well as runnable code snippets among discussions. More-
over, each section is concluded with exercises worth solving and thinking
about, in order to learn the rules of designing and implementing dashboards
for interactive data visualizations. As a benefit we also provide one possible
solution, among many imaginable ones, to support the learning effect. We
primarily focus on interactive dashboards, although many other solutions
for a visualization problem exist and might solve the problem in a more
efficient way. On the other hand, dashboards are easy to understand and to
teach and quickly lead to a desired visualization tool solution equipped with
various interaction techniques. This is also due to the limited amount of time
planned for typical courses on visualization in universities that build a time
frame in which a maximum must be learned with a minimum of effort. In
many of the courses, it was an amazing experience to see the students’ tool
running in the end, either locally on our own computers or via a URL on
the web, making it accessible for everybody who has an internet connection.
This milestone was also reached for the weaker, less-experienced ones, even
when they started with nearly no background knowledge about one or all of
the involved fields in the beginning, again showing us that the content was
successfully explained.

The remainder of the book is as follows: Chapter 1 starts with introducing
the general problem and tries to show the bridges between all of the related
fields. Chapter 2 makes an attempt to describe the data-to-visualization map-
ping with respect to dashboards, while also perceptual and cognitive issues
related to visual and interface design are taken into account. In Chapter 3,
we are going to explain the major programming ingredients to create dash-
boards for interactive visualization, while Chapter 4 builds the basis from an
implementation perspective focusing on the programming language Python.
Applications are provided in Chapter 5 coming with code examples as well
as their visual outputs in the form of dashboards. The book is completed with

Preface xiii

many discussions on scalability issues and limitations which can be found
in Chapter 6, before concluding the book in Chapter 7. A general remark on
the book’s reading strategy is that it can be studied in its entirety, starting
from the beginning, page by page, or each chapter can be read individually
since it builds its own learning unit. This means that an experienced reader
in programming might skip the chapter on programming and might focus on
chapters including visualization, interaction, or design aspects.

https://taylorandfrancis.com

List of Figures

Figure 1.1 A visualization pipeline: Starting with raw data,
processing it, transforming it, building visual struc-
tures, and finally visualizing it in a dashboard. . . . 2

Figure 1.2 Searching for a visual object in a visual scene
is denoted by the term search task that typically
requires focused visual attention and a visiting and
checking strategy to identify the visual object-of-
interest. The observer might search for a set of
neighbored dots visually encoded in a certain color
pattern. 6

Figure 1.3 Different visual outputs created by applying func-
tionality from several visualization libraries: (a)
Plotly. (b) matplotlib. (c) Seaborn. 9

Figure 2.1 Algorithms transform input data to output data.
How this is done exactly depends on user tasks,
that is, under which perspectives data will be
explored. 25

Figure 2.2 The visualization pipeline [177] illustrates how
raw data gets transformed step-by-step into a
visual output. The user group can interact in any
of the intermediate stages and can intervene to
guide the whole algorithmic and visual exploration
process. 26

Figure 2.3 Visualizations, interactions, algorithms, and the
human users with their perceptual abilities build the
major ingredients in the field of visual analytics. . . 27

Figure 2.4 Visual variables [180] describe from which core
ingredients a visualization is built: Position, size,
shape, orientation, hue, value, or texture are just the
major ones from a longer list. 28

xv

xvi List of Figures

Figure 2.5 Pie charts are based on the visual variable "angle"
or "area" while bar charts are based on "posi-
tion" or "length" in a common scale [73] which
seems to be better for solving comparison tasks for
quantities. 29

Figure 2.6 Visual objects can be observed while trying to solve
a search task: (a) Only blue circles. (b) Blue circles
with one red circle which is called the target object,
whereas the blue ones are the distractors. 32

Figure 2.7 Change blindness when comparing two images:
From the original image in (a) there are several dif-
ferences compared to the image
shown in (b). 32

Figure 2.8 Some of the popular Gestalt principles: (a) Reifica-
tion: An incomplete visual object can be completed.
(b) Invariance: A deformation of a visual pattern
still allows to recognize the original object. (c) Mul-
tistability: A visual object might be interpreted in
various ways (at least two ways). (d) Emergence:
A visual object or a person can be detected from a
noisy background. 33

Figure 2.9 Visual objects can be grouped in several ways: (a)
Symmetry. (b) Closure. (c) Similarity. (d) Proxim-
ity. There are even further laws like the law of good
form, common fate, or continuity. 33

Figure 2.10 The Hermann grid illusion demonstrates how
"visual objects" in the form of gray dots can pop
out although there are no such gray dots included in
the image. 34

Figure 2.11 A pie chart is one way to visualize quantities, but a
bar chart makes it easier to compare the values due
to the fact that it encodes the quantities in the bar
lengths instead of the circle sector angles [73]. . . . 41

Figure 2.12 Two different ways to visually encode relational
data while the edges of the graph have directions
and weights, also known as a network [106]: (a) A
node-link diagram. (b) An adjacency matrix. 43

List of Figures xvii

Figure 2.13 A hierarchy can be visualized as a node-link tree
with a root node, parent nodes, child nodes, and
the nodes on the deepest level being, the leaf
nodes. 44

Figure 2.14 At least four major visual metaphors for hierarchical
data exist coming in the form of: (a) A node-
link diagram. (b) An indented plot. (c) A stacking
approach. (d) A nested representation (in which
only the leaf nodes are shown). 45

Figure 2.15 Visualizations for multivariate data: (a) A scatter
plot matrix (SPLOM). (b) A parallel coordinate plot
(PCP). 47

Figure 2.16 A static stimulus overplotted with a scanpath, that
is, a sequence of fixation points. The sizes of the
circles typically visually encode the fixation dura-
tion, that is, how long the eye fixated on a certain
point in the visual stimulus. 48

Figure 2.17 A text corpus can also be split into words and their
occurrence frequencies while the common prefixes
can be used to reduce the display space in use for
showing a word cloud, known as a prefix word
cloud [51]. 50

Figure 2.18 A hand-drawn graphical user interface composed of
several views and perspectives on a dataset (permis-
sion to use this figure given by Sarah Clavadetscher). 52

Figure 2.19 A diagram that includes axis labels, scales, guiding
lines, and a legend. 54

Figure 2.20 Three of the major design problems come in the
form of chart junk, the lie factor, and visual clutter. 56

Figure 2.21 Design problems can occur in several ways: (a)
Visual clutter. (b) A lie factor. (c) Chart junk. . . . 56

Figure 2.22 A hand-drawn mockup of a graphical user interface
(permission to use this figure by Sarah Last). 58

Figure 2.23 On a visualization depicting value changes over
time, we can select a certain point, for example, to
get detail information or to further use the selected
data point in the exploration process. 65

xviii List of Figures

Figure 2.24 Interacting by using a computer mouse is one of
the standard interaction modalities for visualization
tools displayed on a classical computer monitor. . . 67

Figure 2.25 Showing a geographic map on a large-scale dis-
play while the observer is equipped with an eye
tracking device for either exploring where he is
paying visual attention or for using the eye tracker
as gaze-assisted interaction (figure provided by Lars
Lischke). 69

Figure 2.26 Several perspectives on a COVID-19 dataset in a
multiple coordinated view (figure provided by Sarah
Clavadetscher). 71

Figure 3.1 The result when executing the code in Listing 3.5.
A color coded bar chart distinguishing between
two categories smokers and nonsmokers as well as
different tips for total bills. 79

Figure 3.2 Several graphics libraries for creating diagrams
in Python: (a) Plotly Express. (b) Matplotlib. (c)
Seaborn. (d) Bokeh. 80

Figure 3.3 Using Geoplotlib [79] for geo-related visualizations. 81
Figure 3.4 Programming in Python in a powershell is one way

to create, compile, and run programs. Unfortunately,
it comes with a list of negative issues. 84

Figure 3.5 The same code as in Figure 3.4 is illustrated here in
a Jupyter Notebook. 85

Figure 3.6 Several important aspects around source code and
source code quality. 85

Figure 3.7 Larger software systems are implemented by devel-
opers in a collaborative process. 87

Figure 3.8 The major ingredients for implementing a dashboard. 89
Figure 3.9 A slider (a) and a drop-down menu (b) created as

Dash core components. 94
Figure 4.1 Characters and symbols with their corresponding

numeric identifiers represented in the ASCII table. . 128
Figure 5.1 A hand-drawn mockup of a dashboard for interac-

tively modifying the color of a histogram (drawn by
Sarah Clavadetscher). 165

List of Figures xix

Figure 5.2 After executing the dashboard code we get this
graphical user interface (dashboard) with a drop-
down menu and a blue colored histogram. 170

Figure 5.3 A mockup of a dashboard with a drop-down menu
and a slider for manipulating the color of a his-
togram and for filtering a scatter plot (drawn by
Sarah Clavadetscher). 172

Figure 5.4 A grid layout may consist of a number of rows and
columns, like 2 of them as in this case. 175

Figure 5.5 The extended dashboard will show a few more fea-
tures than the one given in Section 5.1.1. Now, we
can see a slider and a scatter plot as well. More-
over, we also have to care for a good layout of the
components although we just have 4 of them at the
moment. 176

Figure 5.6 A hand-drawn mockup of a dashboard for display-
ing data in a histogram and a scatter plot while
both diagrams and their inputs can be given a spe-
cific focus by a tab mechanism (drawn by Sarah
Clavadetscher). 178

Figure 5.7 A dashboard showing two tabs while tab one has the
focus at the moment. Two diagrams are integrated:
A histogram (left) and a scatter plot (right). 184

Figure 5.8 A hand-drawn mockup for a user interface of a
dashboard with a scatter plot, allowing to select a
point cloud for which we see the point distribution
in a linked and color coded bar chart (drawn by
Sarah Clavadetscher). 186

Figure 5.9 Tab two is active in this dashboard showing a
scatter plot with color coded data points and a
linked bar chart in which the selected point clouds
are visually encoded and categorized by their
colors/categories. 193

Figure 5.10 A hand-drawn mockup of a dashboard with several
linked visualizations: A scatter plot, a bar chart, and
a density heatmap to visually explore the spatial
distribution of the points in 2D (drawn by Sarah
Clavadetscher). 195

xx List of Figures

Figure 5.11 Executing the dashboard code and activating tab 2
to interactively explore the trivariate data in a scatter
plot linked to a bar chart and a density heatmap. . . 212

Figure 6.1 Readability and aesthetics cannot be integrated into
a diagram at the same time to a full extent. There is
always some kind of trade-off situation. 218

List of Tables

Table 1.1 Examples for programming languages, visualization
libraries, the year of first development, and additional
special properties. 9

Table 2.1 Displays for which standard interaction modalities
make sense or not: (++) very meaningful, (+) mean-
ingful, (o) not clear, (-) not meaningful, and (–) not
meaningful at all. 70

Table 3.1 Finding Anaconda to get started in the desired operat-
ing system. 82

Table 3.2 Some rows and columns with attribute values serve as
an example dataset for the following code. 90

Table 3.3 An unordered matrix of zeros and ones. 92
Table 3.4 An ordered matrix of zeros and ones, based on the

matrix in Table 3.3. 92
Table 4.1 A list of arithmetic operators, some examples, their

meanings, and mathematical notations. 112
Table 4.2 A list of relational operators, some examples, their

meanings, and mathematical notations. 113
Table 4.3 The Boolean operator and. 114
Table 4.4 The Boolean operator or. 114
Table 4.5 The Boolean operator not. 115
Table 4.6 Bitwise operators, examples, their meanings, and

binary versus decimal. 116
Table 4.7 Operators and their precedences from highest to lowest. 117
Table 4.8 Composite data types with special properties. 123
Table 4.9 Meta characters and their meaning. 130
Table 4.10 Special sequence characters and their meaning. 131
Table 4.11 Set of characters and their meaning. 131

xxi

https://taylorandfrancis.com

List of Abbreviations/Acronyms

1D one-dimensional
2D two-dimensional
3D three-dimensional
AOI area of interest
ASCII American standard code for information

interchange
AWT abstract window toolkit
C programming language
C++ programming language
CSS cascading style sheets
CSV comma-separated values
D3 graph gallery
DNA deoxyribonucleic acid
EEG electroencephalography
GUI graphical user interface
HTML hypertext markup language
IDE integrated development environment
NCBI National Center for Biotechnology Information
NP nondeterministic polynomial time
PCP parallel coordinates plot
PX pixels
R programming language
SPLOM scatter plot matrix
UI user interface
URL uniform resource locator
XAI explainable artificial intelligence

xxiii

https://taylorandfrancis.com

1
Introduction

Making data available in a visual form is of great interest in these days
since the visual output generates a method to find patterns, correlations, and
anomalies in a dataset [178]. The main benefit of visualization comes from
the perceptual strengths of the visual observers [115, 245, 246], allowing
to rapidly detect hidden data patterns that help to find hints or solutions to
the data analysts’ tasks at hand. Although there are various visualization
techniques, diagrams, charts, and plots available today, and many more will
be developed in the future, it has become a tedious task from a design and
implementation perspective to put all of the needed ingredients together in
order to create a runnable, user-friendly, efficient and effective, aesthetic,
and responsive solution for a specific data science task at hand, which is the
general goal to find insights and knowledge in data. However, data comes
in a variety of forms, consisting of individual and primitive or combined
and complex data types, stored in different data formats, on local files or
databases, accessible via a URL from the web, being static, dynamic, or even
evolving in real-time at frequent update rates. All of these data issues already
span a rich space of possible solutions, but the human users are finally the
deciding factor in figuring out if the implemented data visualization solutions
meet their needs and help them to solve their tasks at hand.

In this book, we are going to describe this interesting topic with var-
ious Python code [149] examples. We briefly introduce the visualization
pipeline [177] combined with interaction techniques [258] before we step into
the ingredients required to develop dashboards [13]. For the unfamiliar ones,
we are going to introduce the programming language Python with the major
concepts to build running programs with already quite a lot of functionality.
The Python code is needed to allow some kind of variability in a dashboard,
starting from data reading, parsing, and transformations, finally, leading to
preprocessed data that builds the core ingredient for interactive and scalable
visualizations placed in a user interface, in our case, coming in the form of

1

2 Introduction

a dashboard. Application examples round up the book by showcasing larger
running examples that can be tried out by the readers, even be manipulated or
modified to get the code running for one’s own application examples. Finally,
the experiences of the human observers play a crucial role in the entire
development process. Since we do not know such prior knowledge of our
readers, we try to describe all of the required concepts from the perspective
of nonexperts in computer science, data science, programming, visualization,
and user evaluation.

1.1 A Visualization Pipeline

The general idea behind data visualization is a mapping that describes how
data is transformed from original data sources into something visual, some-
thing with which users can interact, following the common goal of detecting
insights and knowledge in a known or unknown dataset. This whole process
can be illustrated in a visualization pipeline [177] (see Figure 1.1) starting
with raw data, bringing it into a preprocessed form, transforming it into
structured information while finally, presenting those structures in a visual
depiction in one or several types of diagrams, charts, plots, or visualiza-
tions, each depicting a certain kind of data feature, hence providing a visual
perspective on the data under exploration. Human users are, thanks to the
invention of the computer, in the great role of interacting with all of the views,
adapting and modifying them, changing parameters, asking for new layouts,
and all of this in a fast response time to make the visual exploration a user-
friendly experience. The ultimate goal, however, is to get some user feedback
to detect design flaws and, based on that, improve the visual as well as the
interface, that is, dashboard and design.

Figure 1.1 A visualization pipeline: Starting with raw data, processing it, transforming it,
building visual structures, and finally visualizing it in a dashboard.

1.1 A Visualization Pipeline 3

The data-to-visualization mapping is a complex one, consisting of a
multi-stage model with crucial stages and transformations (see Figure 1.1).
All of the involved stages will be described in the book, also taking into
account aspects like visual perception [115] and cognition, to create powerful
visual depictions of data that are not cluttered [202], that do not lie, and
that are free of chart junk [232]. Moreover, we also take into account design
principles for the visual depictions but also for the visual interface and take a
critical look at visual variables [180] that occur in a variety of forms:

• Stages:

– Raw data: This brings the questions into play how the data is
structured, how large it is, if it consists of several data sources,
or if it contains missing or error-prone values. Moreover, the data
might be stored locally on a computer or might be accessible via a
URL from the web. The data could even be static data or dynamic,
in the most complicated way existing in a real-time form.

– Processed data: In many cases, we can find the raw data in a
strange format or even consisting of several unlinked data sources
for which a common key exists to link them into one dataset.
One good idea would be to put all of the data under exploration
into a common data file (maybe in a comma-separated values
(csv) format) or to put it into a database. The general idea behind
this stage is to make the data available for a data analysis or
visualization tool in one data source and avoid looking it up at
several locations which might cause challenging issues due to bad
performance during runtime.

– Transformed data: To really get more structured information from
the preprocessed data, we need some user-defined algorithmic
approaches that put the data into statistical outputs, correlations,
clusters, or even results that are based on data mining extract-
ing association or sequence rules, just to mention a few of the
transformations.

– Visual output: Finding insights in any kind of data, either in
a raw, processed, or transformed form, might be supported by
visualizations that make use of the humans’ abilities to rapidly
detect patterns due to their perceptual strengths [115]. Various
visualization techniques exist, each focusing on certain data types
and users’ tasks at hand [245, 246].

4 Introduction

• Manipulations:

– Reading/parsing: Some steps have to be taken into account to
bring the raw data into a processed data form, for example, during
the reading and parsing process, the data can already be partially
cleaned or annotated with extra information. However, most of the
advanced enrichments can only be done after a more thorough data
transformation process.

– Transformation: The processed and partially cleaned data can fur-
ther be analyzed for common patterns, correlations, outliers and
anomalies, as well as certain sequential behavior in case the data
has a sequential or time-dynamic property.

– Visualization: The visual depiction of the data is of importance,
however, the rendering process has various options to use visual
variables, to use different display technologies, as well as interface
styles and designs, which is particularly important for dashboards.

• Users-in-the-Loop:

– Feedback: The user group is able to interact with all of the
aforementioned stages (however, in Figure 1.1, we only show the
interaction with the last stage). While interacting and trying to
visually explore a dataset, users typically form some kind of con-
fidence level that describes how well the interactive visualization
supports them in solving tasks at hand. This is typically evaluated
in a complex user study, giving concrete tasks based on formerly
stated hypotheses, by measuring dependent variables like error
rates and completion times. Modern evaluations even incorporate
eye tracking and further physiological measures to get even more
hints about visual attention behavior, visual task solution strate-
gies [46], or body-related issues such as blood pressure, EEG, or
stress levels. However, the analysis of such data is typically very
challenging and demands for further advanced visual analytics
systems, meaning statistical evaluation alone is not enough to find
insights.

Furthermore, if users interact with the visualizations, those get trans-
formed as well into different perspectives, layouts, filtered views, and so on.
Hence, those operations are another kind of modification, but typically work
on the visual level, not on the data level. However, mostly the interactions
require further algorithms to be applied which are running in the background

1.2 Human Users and Tasks 5

and which might cause longer waiting times depending on the algorithms’
performances and/or the dataset sizes in use.

Exercises

• Exercise 1.1.1: Imagine you have found a certain dataset on the web and
are interested in the patterns, correlations, and anomalies hidden in it.
Describe the ingredients you need to solve this problem by taking into
account the stages of the visualization pipeline illustrated in Figure 1.1.

• Exercise 1.1.2: How can the users be integrated into the design and
implementation process of a visualization tool or dashboard? What are
typical challenges when asking real users to apply a visualization tool to
a given dataset?

1.2 Human Users and Tasks

Visualization is not good per se, the human users with their perceptual
abilities [245] decide if a certain task or task group can be solved reliably,
or if at least some hints about the data patterns to be searched for can
be provided by an interactive visualization tool. However, not every user
behaves in the same way. All of them have varying properties, are members
of different property groups like layman versus domain expert, young versus
old, nonexperienced versus experienced, disabled vs. non-disabled, and many
more. It is very important during the design process of a visualization tool or
a dashboard in general to take into account those user properties, otherwise,
we might run into problems that are hard to fix later on, once the tool
is designed and implemented. The design process is typically guided by
formerly built hypotheses or research questions about a given dataset. The
goal of the visualization tool is to provide answers to the hypotheses and
research questions, either trying to confirm or reject them, in many cases,
refining them or leading to new hypotheses and research questions. However,
all of them require tasks to be solved, either completely or at least partially.

The biggest issue here is that real users can be included in the design
process right from the beginning, in subsequent development stages, however,
such a strategy is time-consuming and expensive. But the human users with
their research questions are required to make a tool powerful and applicable
to real-world problems. In many visualization designs, we can find the users’
feedback in the end, that is, after the implementation phase has ended, but

6 Introduction

at the cost of getting a lot of feedback worth incorporating. The value of
the feedback also strongly depends on the users’ experience levels with
both, visualization as a research discipline as well as the application domain
where the data stems from. For example, building an interactive dashboard
for visual analytics in medicine demands a user who is able to read and
interpret visualizations and diagrams while at the same time having some
profound knowledge in medicine. Such a combination of expertise makes the
development of a visualization tool quite challenging, time-consuming, and
cost-intensive [33].

The value and effectiveness of visualizations [95, 237] are also dependent
on the tasks that have to be solved by using them. Each visualization tech-
nique typically only follows a certain number of specific tasks for which it
is designed and for which the human users perform best. There is an endless
list of typical data exploration tasks that can be supported by visualization
techniques, however, some of the tasks might be solved just by applying an
algorithm that can be given some parameter values, and then the desired task
solution is delivered after some time. But in cases in which there is no clear
definition of such input parameters, that is, in cases in which an algorithm
cannot be specified clearly enough to produce a solution, we might wish to
look at a diagram to let the human users judge and evaluate the visual patterns.
This brings us to a situation where a certain freedom of decision making is
allowed, in the best case leading to the fact that an algorithm is known or can
be created to faster find a task solution.

Figure 1.2 Searching for a visual object in a visual scene is denoted by the term search task
that typically requires focused visual attention and a visiting and checking strategy to identify
the visual object-of-interest. The observer might search for a set of neighbored dots visually
encoded in a certain color pattern.

1.2 Human Users and Tasks 7

Well-known and often occurring tasks from a much longer list are for
example:

• Search task: One of the most time-consuming task comes in the form
of a visual search, for which the entire display has to be visually
inspected in the worst case, to identify the visual object-of-interest (see
Figure 1.2). The search can be more efficient if a certain visual feature of
the object-of-interest is known beforehand, for example, a certain color
or color pattern, hence leading to some kind of visual pre-filtering of the
display.

• Counting task: In cases in which only a few objects are visually
represented, we might start inspecting them one-by-one and count the
visited objects, for example, to get an idea about how much information
is presented visually. The number of objects to be counted should not be
too large; otherwise, a counting task would become a tedious procedure
that one would probably not like to solve.

• Estimation task: If too many visual objects are depicted, we typically
do not count them one after the other. In such a scenario, we would
switch into some kind of estimation task that gives an approximate
number of visible objects. In most cases, groups of visual objects are
estimated based on the number of objects and those are later compared,
for example, after having applied a clustering algorithm, for which a
visual output is displayed.

• Correlation task: If two or more variables are under exploration we
are typically interested in a certain correlation behavior, asking whether
those variables behave in a similar way or show some kind of contra-
dicting, opposite effect, for example, the values of one variable show an
increasing behavior while those of the other variables are decreasing in
the same time period.

• Pattern identification task: A very general task comes in the form
of pattern detection, which requires to understand what a pattern is.
This can actually be a problem for algorithmic solutions, which do not
know exactly which kind of pattern we are looking for. The pattern
identification task might be supported by visual outputs which make
use of the perceptual and cognitive strengths of the humans’ visual
systems [246].

There are many more tasks that are imaginable, too many to mention all
of them here, but typically tasks are based on a sequence of much simpler

8 Introduction

tasks. The general question in usability is how users solve tasks step-by-
step. This sequential visual attention process can give useful insights in the
fact if a user interface, dashboard, or visualization tool has been designed
and developed by following the rules that make it a powerful tool for data
exploration and analysis. Eye tracking [44, 87, 123] is a modern technology
applied to interactive visualizations [8] with the goal to record visual attention
behavior but, on the challenging side, to also visually and algorithmically
explore the eye movement data.

Exercises

• Exercise 1.2.1: Imagine you have a dataset about a social network, for
example, people from a certain region who are related or not. Which
hypotheses or research questions might be interesting to ask, given the
fact that we have a social network dataset?

• Exercise 1.2.2: Which kind of tasks do we need to solve, to find solutions
to the formerly stated hypotheses about the social network dataset?

1.3 Programming Directions and Solutions

There are various programming solutions for this kind of problem. On the one
hand, we can decide to use a certain programming language like Python, Java,
JavaScript, C, C++, R, and the many options we have these days [37]. On
the other hand those programming languages typically support visualization
libraries or frameworks from which we can choose. Such libraries are, for
example, matplotlib, Bokeh, Plotly, Swing, D3, CUDA, and R Shiny, just to
mention a few from a really long list (see Table 1.1 for a longer, structured,
and temporally ordered list). Which ones are finally chosen depends on the
developers’ decisions and on which tasks the designed and developed tool
should be created in particular. However, not only the programming language
and visualization libraries are important, we also have to know about the
design issues that have to be taken into account in order to create a usable
visualization tool. For example, the visual design and the interface design
play a crucial role for usability, that is, if such rules are not followed properly
we might run into a situation in which the tasks at hand are not solvable
or in which the tool suffers from a degradation of performance at some
tasks [202]. The visual design typically depends on the visualization library
(see Figure 1.3 for some visual examples created with different visualization

1.3 Programming Directions and Solutions 9

libraries) while the interface design is typically guided by given or self-
created layouts combined with additional component properties like margins,
distances, borders, sizes, fonts, and many more.

Table 1.1 Examples for programming languages, visualization libraries, the year of first
development, and additional special properties.
Programming Visualization Year Special

language library properties

Java AWT 1995 Graphical user interfaces (GUIs)
Java Swing 1996 GUI widget toolkit

Python Matplotlib 2003 Interactive visualizations
R ggplot2 2005 Lattice graphics

Javascript D3 2011 Web standards
R Leaflet 2011 Spatial data visualization
R Shiny 2012 Interactive web applications

Python Bokeh 2012 Modern web browsers
Python Seaborn 2012 Statistical graphics

Javascript Plotly 2012 Web-based
Javascript Chart 2013 Open-source library

Python Geoplotlib 2016 Hardware-accelerated
Python Chartify 2017 Open source library

R Esquisse 2018 Drag and drop interface

(a) (b) (c)
Plotly matplotlib Seaborn

Figure 1.3 Different visual outputs created by applying functionality from several visual-
ization libraries: (a) Plotly. (b) matplotlib. (c) Seaborn.

The biggest challenge from a programming perspective is to choose and
to connect the right components in order to create a successfully running,
efficient, and effective visualization tool. However, this is actually a big issue
and requires profound knowledge about a multitude of scientific disciplines,
with visual design and programming among them. To summarize this prob-
lem, we have to know how to build a visualization tool, starting from raw data
and ending with an interactively running visual output, possibly be accessible

10 Introduction

online via a URL that has to be typed into the URL field of a web browser.
Such a web-based tool is easiest to start from users’ perspectives since it
just requires to simply write or copy and paste the correct URL into the
web browser, no extra installations are needed. Actually, a dashboard can
be built in exactly this way, keeping the burden for the users quite low and
hence, with such web-based visualization tools, we can quickly distribute
it among a large community, for example, to disseminate some valuable
results based on visual analyses of data. One big issue can still occur. We
need a stable internet connection to access the implemented visualization tool
successfully; otherwise, a locally stored version of the tool would also be an
option, but negatively, the users have to understand how to get it running on
their computers.

If a dashboard is running, it cannot only be used for data exploration but
even for services, for example, a company might need it to sell products or
request customer reactions and the like. There is an endless list of application
scenarios in which dashboards are worth designing and implementing. How-
ever, more and more dashboards are created to make data visually observable,
for example, by showing the relations in a social network, informing about
weather trends, showcasing the international flight behavior, or illustrating
earthquakes happening on earth every day, from a daily, monthly, or yearly
perspective, provided by multiple coordinated views [200] and the integration
of various interaction techniques [258]. The data scientists are much more
experienced to use algorithms and visual outputs since it belongs to their
daily jobs to deal with data of different kinds; however, the biggest issue
here is to make the data understandable to the laymen, the nonexperts in data
science and data visualization, hence a dashboard that runs online can be of
great help, also for people who do not regularly work in the field of data
science. The goal of this book is to involve interested people in this domain,
that is, nonexperts, to make them aware of the technologies and processes to
build such tools by themselves one day. This has a positive benefit that they
are not dependent on the work of others anymore, but can create their own
independent solutions to their tasks at hand.

Before starting to create one’s own dashboard, we have to understand the
aspects surrounding this whole process. Visualizations have to be understood
and which purpose they have for a certain data type. For example, prominent
visualization techniques like histograms, bar charts, pie charts, scatter plots,
star plots, scarf plots, dendrograms, or geographic maps with additionally
overplotted information (maybe population densities) are a first step but also
the various interactions they support and how they can be linked for creating

1.3 Programming Directions and Solutions 11

a more flexible and complex visualization tool with much more functionality
can be of great interest. Even animated diagrams might be interesting; for
example, if some kind of dynamic story has to be told with data which
is oftentimes preferred in the industrial environment to show processes to
customers. It may be noted that even if all of the involved technologies
to build a dashboard are understood and can be applied, a big issue still
comes from the computer science side which also deals with algorithms and
their runtime complexities [102]. If a dashboard does not only show data
visually, but the data have to be transformed in an earlier stage or even in
real-time, the implementors might get confronted by several more hard-to-
tackle issues, also including the data handling and efficient access to the
data, for example, stored in a database or in a text file. In general, creating
powerful visualization tools, maybe in form of a dashboard, include many
hidden bottlenecks and drawbacks. However, we try our best to explain those
step-by-step in a tutorial-like book with many examples and exercises with
solutions.

Exercises

• Exercise 1.3.1: Search for programming languages and visualization
libraries and describe their benefits and drawbacks for the task of
creating visualization tools and dashboards.

• Exercise 1.3.2: What are the positive and negative aspects when using
web-based solutions for visualization tools?

https://taylorandfrancis.com

2
Creating Powerful Dashboards

A dashboard can be regarded as some kind of user interface that ‘lives’ in
a certain display with a certain horizontal and vertical extent [161]. These
dimensions can be made use of to place the required interface components
and visualizations, diagrams, plots, or charts. But also, the interaction tech-
niques [258] are dependent on the display, the visualizations-in-use, how they
are coordinated [200], and which tasks the users plan to solve. Dashboards
are not static, but they are interactive, dynamic, and hence, they are full of
life with a lot of functionality. They are a quite easy-to-implement way to
create a visual output to illustrate data, in particular, to show the patterns,
correlations, and anomalies contained in data. Apart from just showing data,
we might also be interested in analyzing data, for example, by applying
several algorithms that transform the data to get what we are looking for. In
many cases, the results of such algorithmic approaches are that complex that
a visual depiction is needed to understand the outputs of an algorithm, either
after it has terminated or during its runtime [59, 62]. A dashboard offers a
powerful method to let users play around and experiment with the data in a
visual form, either with the raw data or with processed data. Moreover, if a
dashboard is available online it can be used to disseminate the found insights,
for example, to present them to a larger audience, either in a talk or by sending
around the dashboards’ URLs that interested experts or nonexperts can easily
get started to see the results.

The topic of creating dashboards for data analysis is getting more and
more interesting for many research communities, in particular, if they deal
with datasets that need to be explored for patterns and outliers or anomalies.
Since the programming experience of many researchers might be limited
because they rely on existing tools and techniques to build a dashboard or
they have to use an already implemented dashboard that might be expensive
and that might not contain all the desired features. However, although any of
the aforementioned approaches might be useful to get some good results, it

13

14 Creating Powerful Dashboards

is not easily possible to be flexible in the sense of being able to decide which
functionality, which visualization, and which interaction to offer at what place
and at what time in a dashboard, that is, creating one’s own solution might
still be the better option. There is a lot of support for building dashboards
like Microsoft Power BI, QlikSense, Tableau, or Grafana, just to mention
a few. Those consist of a lot of functionality and negatively, as also in the
case of a purely programmed solution, they have to be learned to efficiently
work with them. Once they are understood, the dashboard creators are miss-
ing functionality and control that is needed to build dashboards designed
for their tasks at hand and to easily extend them with new functionality.
Programming a dashboard from scratch, on the other side, can be a longer-
duration solution, but these kinds of dashboards can be designed for nearly
any kind of task [255] that has to be solved in data analytics, flexibly equipped
with interaction techniques. However, a profound knowledge about Python,
for example, is required to equip the dashboard with all of the features that
are needed.

Not only the programming side is problematic, but also questions about
data handling, visual and interface design, including HTML and CSS to guide
the layout, appearance, and aesthetic appeal of a dashboard, human–computer
interaction, as well as user evaluation might be worth studying, in order
to really get the most powerful solution we are waiting for, to dig deeper
in our own or other people’s data, to explore it for patterns, correlations,
rules, outliers, and anomalies. Moreover, linking all views and perspectives
on the data, storing snapshots of the current state of the visual and algorithmic
output, uploading data, sharing, and disseminating the results in the form of
URLs, visualizations, or parts of a dataset that contain valuable information,
are powerful, and can only tap the full potential if most of the techniques
in this interdisciplinary field of designing and implementing dashboards are
understood. No matter which kind of dashboard is created, the human users,
with their tasks at hand should definitely be consulted, maybe in a controlled
or uncontrolled user study, with the intention to get valuable feedback about
the design flaws in an interactive dashboard. Such design flaws could be based
on the visualization techniques in use or on the visual interface given by
the dashboard with its visual components like sliders, buttons, text fields,
and the like as well as their layout and interactive response. Moreover, from
an algorithmic perspective, it might be worth studying how the data gets
processed to understand the runtime complexities and bottlenecks in the form
of poorly running algorithms that finally, also impact the interactivity of such

2.1 Data Handling 15

a dashboard. Nobody wants to wait for a long time until the next interaction
can be applied.

Actually, building a dashboard can be based on many programming
languages. For example, the language R with its visualization library Shiny
has shown to be a good solution, but for the newcomer in programming and
in dashboard design, we recommend the programming language Python with
either its powerful frameworks like Bokeh or Dash by Plotly. There is some
tendency to use Dash since many users report on the fact that it is easy to learn
while already quite powerful simple dashboards and web apps can be built
with basic programming skills. However, if more advanced dashboards have
to be created, much more profound knowledge about Dash, Plotly, and Python
is needed. Dash itself is JavaScript-based to some extent since it makes use
of React, a popular web framework based on JavaScript and Flask which is
a prominent web server based on the programming language Python. Dash
does not only support Python but programming languages like R or Julia as
well. Deploying the first dashboard results and testing them online, might be
done by using Heroku or pythonanywhere, but for larger results in the sense
of using big data and more advanced functionality in the form of powerful
algorithms we recommend an own virtual machine, in order to let it run on a
server to make it accessible for anybody on earth who owns a computer with
a stable internet connection.

In this chapter we explain which typical ingredients are needed to build
a dashboard, starting from the perspective on the data that can come in a
variety of forms (Section 2.1). We will also take a detailed look on aspects
related to visualization and algorithmic approaches (Section 2.2), also includ-
ing the human users with their tasks at hand to be solved. To include the
aforementioned visual aspects in a broader context, we will describe typical
visualization examples and applications (Section 2.3). The various rules for
visual and interface design with good practice and no-goes will also be
taken into account (Section 2.4). Finally, we look at interaction concepts,
modalities, and displays (Section 2.5).

2.1 Data Handling

Data is actually the starting point of the design and also the development
process of an interactive dashboard for data analysis and visualization [187].
There are typically lots of patterns, correlations, and anomalies in a dataset,
but those are hidden somewhere in the flood of data, which makes data
analysis and visualization a powerful concept to detect them. However, the

16 Creating Powerful Dashboards

detection is in most cases more difficult than expected since we typically
do not know what to look for, where to find it, and which tool, that is,
analysis technique and visualization [245, 246], to apply. For this reason,
we either know the structure of a dataset and can use well-known and well-
researched techniques, or we have to deal with a totally unfamiliar dataset,
making us rely on hypotheses and research questions that come up with
tasks at hand to be solved. These tasks and hypotheses guide the design and
implementation of a visualization tool, for example, a dashboard. A dash-
board might be improved in an iterative way until the given tasks are solved
and the hypotheses are finally either confirmed, rejected, or refined [141].
However, in many cases, after having used a dashboard for data analysis and
visualization we get even more hypotheses. The reason for this is that the tool
with all of its functionality is that powerful that it provides more insights than
we would have expected in the beginning, before getting an algorithmically
processed and visualized dataset. On the negative end, it is impossible to
create a dashboard that is able to provide answers to all tasks, hypotheses,
and research questions at the same time. Before we start designing and
implementing such a tool we have to carefully look at our data and the users’
tasks at hand to come up with a list of useful features worth implementing.
Moreover, we have to understand how those features are linked, for example,
by interaction techniques [258]. The challenging problem with such a first
design phase is that there are various data types that a dataset can consist of.
Those typically build the starting point for further steps and stages.

2.1.1 Data types

The data to be analyzed and visualized plays a crucial role in the design and
implementation phases of an interactive dashboard for data exploration [13].
We cannot just start creating a dashboard without knowing about the data in
use. This process might be comparable to building a house without knowing
the environment and the ground it should be built on. The data can come in
a variety of forms, being primitive or complex, static or dynamic, univariate,
bivariate, trivariate, or even multivariate, being stored in a text file or in a
database, being homogeneous or heterogeneous, and even more distinguish-
ing features we might find when we are talking about data [216]. However, no
matter which kind of data a dashboard is based on it can typically be split into
its basic forms while those basics are important to understand to start with
appropriate design decisions right from the beginning, no matter if the visual
or interface design is taken into account. There are some kind of pre-defined

2.1 Data Handling 17

and well-established algorithmic approaches and visualization techniques for
each data type, and we recommend, to use them whenever possible since they
have shown to be powerful for certain tasks at hand that are solved based on
them [44]. Hence, the approaches and techniques are not only based on the
data types but even more on the users’ tasks. It is recommended to take into
account both sides of the story, the data and the users who are trying to find
insights in the data, but actually, getting the feedback of users is a challenging
task, and in the best case, it should even be considered in any design and
implementation phase, not only after the final product is created [220].

From the perspective of data type structures, we might distinguish
between primitive data and complex data, that is, typically composed of two
or more primitive data types or even more complex data types, although there
is actually no limit about what to combine and to what extent. For example,
a network of objects consists of the objects themselves with relations among
them and the object properties which could be given as multivariate data,
and this might even be time-varying. Primitive data can occur as quantitative,
ordinal, or categorical data.

• Quantitative data: This kind of data exists in the form of numerical
values and meaningful arithmetic operations can be applied on it. For
example, a certain number of cars has to be transported by a car truck.
Each car has a weight, that is, a quantitative value. Summing up all car
weights makes sense, for example, if all of them have to be placed on the
car truck and we are interested in the total weight to avoid overloading
the truck. Hence, this kind of data can be regarded as a quantitative data
type.

• Ordinal data: This data typically also exists in the form of numerical
values, but it can also exist in any kind of form for which an inherent
absolute order among the elements is given. Arithmetic operations do
not make sense but all elements in the dataset can be ordered in a
certain well-defined way. An example might be given by show sizes in a
department store. Those are represented by numerical values. However,
summing up shoe sizes does not make sense; ordering them makes
sense; otherwise, a customer would hardly find the right shoes in the
department store.

• Categorical data: This kind of data puts elements into categories, as
the name already suggests. It can also exist as numerical values, those
cannot be transformed by arithmetic rules nor can they be ordered,
they are just categories. For example, bus lines could be identified by

18 Creating Powerful Dashboards

numerical values, but it does not make sense to add bus line 5 to bus
line 8, for example, nor makes it sense to order the bus lines by their
numbers. The lines are just representatives for certain routes a bus is
taking in a city.

Apart from primitive data, we typically meet much more challenging data
types, challenging in a way that it is more difficult to apply algorithms and
visualizations to detect insights in them. Those complex data types could be
classified as relational, hierarchical, multivariate, textual, spatiotemporal, or
trajectorial data, just to mention a few from a much longer list.

• Relational data: Data objects can be related to some extent. These
relations are expressed in relational data which can consist of binary or
multiple relations between two objects. The data structure we are talking
about in such a case is a graph [248] which can be undirected, in case
the direction of a relation is irrelevant, or directed, in case the direction
is relevant. If weights of the relations are of particular interest and the
relations are directed, we call such a graph a network. For example, a
social network, as the name suggests, contains data of a relational data
type. The people are the data objects while the network itself, with all
its connections, is given by the (weighted) relations between all those
people.

• Hierarchical data: If data objects are superior to some others causing
some kind of parent–child relationship we consider this kind of data
structure a hierarchy [196]. It consists of a root node (the topmost
object), inner nodes (objects in-between), and leaf nodes (objects on the
lowest hierarchy level). An example for such a hierarchy data type might
be a file system on a computer which starts with a directory that contains
other directories (subdirectories), again some other directories, and on
the lowest level there are the files. There are two types of hierarchy data
types which are containment hierarchies and subordination hierarchies.
The file system is a containment hierarchy, while a company, a family,
or a sports league hierarchy is based on the principle of subordination,
not containment.

• Multivariate data: Data that has the form of rows and columns with
numerical values is denoted by the term multivariate data [116, 117].
Each row, that is, case or observation, contains values for each column
under a certain condition, that is, a variable or an attribute. The value
can exist between the minimum and maximum of a given scale while
the scale can vary from column to column. An example for such a data

2.1 Data Handling 19

type would be an Excel table full of values representing the COVID-
19 attributes for each of the countries in the world. Each row would
be a country and each column would refer to a value under a certain
condition, that is, an attribute like the number of infected people, the
number of vaccinations, the percentage of men/women, or the number
of people currently in hospital due to COVID-19, just to mention a few.

• Textual data: Such data might be interpreted as a sequence of characters,
each having a meaning. The sequence has a well-defined order to make
it interpretable. However, text can only form a semantic meaning if it
is interpreted as a whole and not by inspecting its parts, letter by letter.
Textual data could be interesting as an augmentation for visualization,
for example, as labels, in cases in which a pure visual depiction is
not enough or in cases in which the visual representation should be
emphasized by additional textual information, such as in geographic
or public transport maps. Textual data can occur in small pieces or
even in larger ones, for example, including textbooks or source code
of a software system that is typically hierarchically structured as well
which shows us a classical example for the fact that data types can be
composed of several other types like textual and hierarchical ones as in
this scenario.

• Spatiotemporal data: Two aspects might occur together in data, for
example, space and time, making it of a spatiotemporal data type. This
means that the data might be recorded in a spatial dimension like one-
dimensional (1D), two-dimensional (2D), or three-dimensional (3D),
and the data might even change over time in those dimensions. An
example would be eye movement data that is typically recorded during
visually attending a 2D or 3D static or dynamic stimulus over time [152].
Also, traffic data could be considered as being of a spatiotemporal nature
since traffic happens in certain geographic regions and typically varies
from hour to hour, or day to day, depending on the temporal granularity
and temporal effects like rush hours or anomalies like car accidents
causing road blockages [111].

• Trajectorial data: Movements in a spatial region from location to loca-
tion, forming a sequence of spatial positions are creating data of a
trajectorial data type. This data type is related to spatiotemporal data, but
the spatial aspect might not consider 2D or 3D, it is more based on 1D
curves in space. For example, a mathematical function might produce a
trajectory since it describes a mapping from one dimension to another
one, typically time to locations in a map or on a 1D scale. The stock

20 Creating Powerful Dashboards

market over time could be interpreted as a trajectory, but for example,
throwing a stone might be considered much more as a trajectory if we
are interested in it in a physical experiment. Also vehicles and the human
eye typically form trajectories over space and time, with the extension
that they might stop for a while at certain locations.

As already seen in the spatiotemporal data type, data are in many cases
not static but are changing over time [4], making it a dynamic data type.
The dynamics of the data bring into play new challenges since the dynamics
of the data might be explorable after a certain time, making it some kind
of offline data analysis problem, or the data might be explorable during the
dynamics, making it an online, real-time data analysis problem [84]. The
offline problem might be easier to solve since from an analysis perspective,
we have more time to react on the data, meaning the analysis works as
a post process. In the online, real-time scenario, the analysis techniques
must keep pace with the incoming data chunks, transform and process them
quickly, and provide real-time rapid solutions. This can actually become the
bottleneck of a data analysis point of view, hence in typical situations not
all data chunks are processed, just a representative one at a certain well-
defined periodically occurring point in time. Defining these representatives
can also be a challenging problem. The biggest problem is to not lose any
important information from the original data. We actually do not know
beforehand what the important information is and might make a lot of mis-
takes here in one of the earliest stages of the data analysis and visualization
process.

Exercises

• Exercise 2.1.1.1: Imagine you have an Excel table full of values. Which
kind of data type would this scenario refer to? Which kind of data type
do the individual entries refer to?

• Exercise 2.1.1.2: People in a social network know each other, are send-
ing messages to each other, but might even be related by other attributes,
for example, in a family hierarchy. Which kind of data types can you
find in such a scenario?

2.1.2 Data reading and parsing

The data to be analyzed and visualized can occur in several forms. It might
be existing in a data file or in a database for example. Those could be

2.1 Data Handling 21

a local file or database, or it could be accessed remotely via an internet
connection, for example, by just making use of a URL to access the data.
This might be the best option for real-time data that cannot be stored in
typical scenarios due to its immense growth and change over time. Only
the latest snapshots of the data or the data in a certain temporal distance
to the current version of the data are still available. The remote access is
beneficial if the data is huge [140], hence being stored on a server that
is capable of keeping much more data than a standard personal computer,
laptop, or notebook. On the negative side, we actually see the challenging
problem of keeping the internet connection alive, stable, and able to access
large amounts of data in real-time; otherwise, the application, that is, the
data analysis and visualization tool, would suffer from various limitations
and restrictions or it would not start at all. This is an important aspect for
presentations in which the latest results have to be shown. If the internet
connection is a problematic issue in a conference or meeting room, we might
work with a local tool version, for the analysis and visualization itself, but
even more for the data. However, if the data is too big to be stored locally, we
should be aware of the fact that only the most important data pieces can be
mirrored on the local machine and the interactive results can only be based
on these data portions. The data might be pre-aggregated by summing up,
averaging, classing, or finding a representative data element from a list of data
elements.

If the data is stored in a database we must take into account that there
must be a library supporting the access of such a database, that is, the reading
and writing of data entities. On the other hand, if the data is stored in a data
file we must be aware that there are several data formats that the analysis and
visualization tool must be prepared for. For example, a multivariate dataset
might be stored in a comma-separated values (csv) file that could be opened
by using a Pandas Dataframe [169], a Python concept with which it is possible
to actually read such data with only a few lines of code. If the data is a
hierarchical dataset, consisting of parent-child relationships like a file system
or an NCBI taxonomy, we might be confronted by a Newick file format for
which there are also libraries available that can read such a data type. In
the most general data type scenario, we must define our own data reading
functionality that parses the data, that is, each data entity, in corresponding
data objects that are internally processed and stored to make them usable for
the tool, maybe to analyze and visualize the data in the form of an interactive
dashboard.

22 Creating Powerful Dashboards

Exercises

• Exercise 2.1.2.1: In many scenarios in the field of data science, we find
the data to be analyzed in several nonlinked data files. How would you
design a data reading and parsing functionality to get all the information
you need from all of the data sources?

• Exercise 2.1.2.2: How should a data parser be designed and implemented
to be able to react on different data formats or even on changes in a given
data format?

2.1.3 Data storage

Not only reading and parsing the data can be a major issue when designing
and implementing dashboards for data analysis and visualization. Also stor-
ing might already be difficult, although storing just means placing the data
somewhere on a big heap to read, parse, transform, and process it later on.
Storing data is still important since users of a data analysis and visualization
tool can decide to reduce the original dataset by applying filter techniques
based on certain features and insights that have been found by applying such
a tool. Not even the original data format has to be kept, but the tool might offer
functionality that can transform the data into a better more tool-specific data
format with which we can work much easier at later stages. For example, the
stored data snippet might be loaded later again to show the found patterns
and anomalies to an audience which has the benefit of not managing the
whole big dataset again and again, which would lead to a waste of time. If
the data is located on several data sources the tool might already link those
datasets and puts them together in a linked data source that is then stored in
an individual file in a certain format. Hence, the formerly heterogeneous data
gets combined into a common data source that might be easier to reload in
the tool again and again.

Soon we are in a situation in which we have to deal with big data [140] for
which profound knowledge about data handling aspects is required in order to
achieve an interactively responsive dashboard. Many of the bottlenecks, from
a usability perspective, are caused by a poorly running data handling, for
example, a slow access to the data or performance issues when transforming
the data, from one dataset to another one, in a different data format, maybe
based on the input–output mechanisms of certain algorithmic concepts.
However, most of the aforementioned problems come from the size and
complexity of the original data, how it is stored in a data file or database, and
how it is further modeled internally in tool-specific data structures. Big data

2.1 Data Handling 23

brings into play the five big V’s that are volume, variety, velocity, validity, and
value [206]. Volume stands for the sheer size of data, for example produced
by sensors, the internet, or the behavior of users who order articles, pay with
credit cards, or travel around the globe. The data can even be so big that
they cannot be stored anymore on traditional computers, hence they must be
moved to special servers or even be split into different data sources at the cost
of maybe reuniting them again for certain data analysis. Variety expresses that
data can come in many forms, which can be structured or unstructured, hence
creating an understandable data format from which the data can be accessed
quickly and effortlessly is a major challenge. Velocity describes how fast we
have to access the data, for example, if an algorithm must generate real-time
analyses we only have fractions of milliseconds to respond to requests and the
algorithms themselves have to operate very quickly. Validity focuses on the
quality of data, for example, freeing the data from noise or add missing data
entities that would hide certain patterns, and that might increase the runtime
of algorithms. The value of the data is important to express which impact the
results from the big data can have, that is, which value they produce for the
academic or industrial community.

Exercises

• Exercise 2.1.3.1: What is the biggest dataset that you can store on your
computer? How could you reduce the size and the complexity of the
original dataset so that it fits again on your computer for a locally
running tool?

• Exercise 2.1.3.2: If we are talking about big data, we come across the
five big V’s standing for volume, variety, velocity, validity, and value.
Discuss which of the V’s is problematic for the implementation of a
dashboard and which solutions exist to mitigate this situation?

2.1.4 Data preprocessing

One goal of data preprocessing is to get rid of many negative issues and
problems in the original data, for example, removing irrelevant information
that is not needed. Such data-cleaning processes can reduce the size and com-
plexity of a dataset before it gets passed through more advanced algorithmic
analyses. Moreover, noise in the data typically leads to an unwanted size of
the dataset. Hence, it would be beneficial to get rid of data noise, that is, data
in data that has no meaning for data analysis. In contrast, there might even be

24 Creating Powerful Dashboards

not enough information in the data. In such cases, the goal of a preprocessing
step might be to close certain data gaps, for example, by interpolation, even
measurement errors, or uncertainty effects whenever this is possible. In many
situations, data preprocessing tries to improve or augment original data, but
as a negative consequence, there could be the negative effect of removing
relevant data elements unintentionally. Consequently, the preprocessing step
must be taken with care to not lead to misinterpretations later on. The positive
side effect of a data preprocessing can be that the interactive responsiveness
of a data analysis and visualization tool gets much faster due to the fact
that irrelevant information is removed or in the opposite effect, relevant but
missing information is already added and reduces the runtime complexities
of algorithms in the data transformation step.

The data preprocessing typically happens before the algorithmic analyses
and visualizations as the term pre already suggests. However, in some situ-
ations, the preprocessing cannot work properly without the interventions of
human users. For example, it might be a good idea to show the data in its
original form and let the users decide which algorithm to apply to remove
noise in the data. In some situations, it might actually be the noise or a gap
pattern that we are looking for, which is important for detecting insights in
data or to confirm or reject hypotheses. Consequently, it would be a bad idea
to automatically remove those patterns in a preprocessing stage leading to
the effect that we would never see what we are actually interested in. A
visualization tool should support both options, that is, showing the data in its
original or preprocessed form. Even a difference between both forms might
be useful to explicitly point at data elements that are not needed or that are
missing on the other hand.

Exercises

• Exercise 2.1.4.1: What could be the reasons for erroneous data, missing
data, or uncertain data?

• Exercise 2.1.4.2: What are typical solutions to handle missing data
elements in a given dataset?

2.1.5 Data transformation

In rare cases, we can start right away with original data that is read by the tool
and parsed into tool-specific data structures. The more general situation is that
we can read the data and know which data types it is composed of and which

2.1 Data Handling 25

Figure 2.1 Algorithms transform input data to output data. How this is done exactly depends
on user tasks, that is, under which perspectives data will be explored.

attributes it contains; however, this raw information is not useful to guide a
data analyst to data patterns like correlations, trends, or anomalies. To reach
the ultimate goal of a data analysis and visualization tool, maybe given as a
dashboard, we have to transform the data into other formats that are typically
stored internally. Such formats might uncover special relationships among the
data elements, that is, formerly unrelated items when scrolling through the
data, get internally linked by advanced algorithmic concepts. In most cases,
the applied algorithms transform a given dataset into a different kind of data
only carrying the required information, the one that supports data analysts
to solve given tasks in order to confirm, reject, or refine given hypotheses
about the original dataset. For example, a dataset consisting of a list of people
with ages, genders, interests, and messages sent around might be transformed
into a matrix of weighted relations telling to what extent certain person pairs
are related. In the original list of people, it would be hard to identify any
groups of related people; however, after applying an algorithm that takes the
crucial information from the list and that transforms it into pairwise relations
of people, we can solve tasks answering such person relation questions much
easier.

There are many examples from a long list of data transformations. All
of them might be described by starting with an input dataset and modifying
the input to an output that shows the original input data under a different
perspective (see Figure 2.1). A few prominent examples are data aggregation,
ordering and sorting, clustering, data mining, dimensionality reduction, or
even deep learning approaches that try to train a model by making use of
neural networks with the goal to learn certain patterns on which the algorithm
can react in case new data entities come into play. There are various advanced
algorithms that transform data, some are very fast, others might have a
high runtime complexity for which profound knowledge is required to find
heuristic approaches that quickly compute solutions that are not optimal but
still acceptable in the sense that they create a local minimum. Examples

26 Creating Powerful Dashboards

for such problems are the optimal linear arrangement problem [74] (also
sometimes called MinLA problem for the minimum linear arrangement). It
is challenging and very time-consuming to compute the optimal arrangement
for a matrix of pairwise relations but a local minimum might be sufficient to
detect clusters among the pairwise relations. Such NP-hard problems [102]
are known to create challenges for a visualization tool, in particular, if the
focus is on fast interactions.

Exercises

• Exercise 2.1.5.1: What are the benefits and drawbacks when transform-
ing data from its original form to a transformed one?

• Exercise 2.1.5.2: Aggregation can be a form of data transformation
that has the benefit of reducing the dataset size. How can a new data
element stemming from an aggregation of several original data elements
be computed?

2.2 Visualization and Visual Analytics

Figure 2.2 The visualization pipeline [177] illustrates how raw data gets transformed step-
by-step into a visual output. The user group can interact in any of the intermediate stages and
can intervene to guide the whole algorithmic and visual exploration process.

Data alone in all its varieties and data types with all data preprocessing
steps and algorithmic transformations can only tell us half of the truth about
certain phenomena from the real world. We can store any kind of data with
incredible sizes and complexities but without seeing a visual output in the
form of graphics, we, the human users, are not really able to derive insights, to
see patterns, correlations, or anomalies [245]. Interactive visualizations [258]

2.2 Visualization and Visual Analytics 27

are powerful tools with their expressiveness and information communication,
making use of the perceptual abilities of the humans [115, 246] to rapidly
detect visual patterns (see Section 2.2.2). Those visual patterns alone are not
the final solution, they need to be interpreted by remapping them to data pat-
terns, with the goal to confirm, reject, or refine formerly stated hypotheses, or
to build new hypotheses about the data that we would never think of without
having seen the data in a visual form [139, 141, 143]. Such hypotheses are
typically involving user tasks that guide the whole data exploration process
(see Figure 2.2 for an entire visualization pipeline). For example, if we are
interested in a maximum value in a dataset and we are trying to solve this
visually, we have to solve a comparison task that tells us that a certain value
is the largest one among all visually displayed values.

Figure 2.3 Visualizations, interactions, algorithms, and the human users with their percep-
tual abilities build the major ingredients in the field of visual analytics.

Visualization is powerful for problems for which we are not able to
specify an algorithm with parameters [179]. The maximum search described
above, on the other hand, can be solved by a pure algorithmic solution,
by using a maximum finding algorithm. This is possible since we know
the input and output parameters as well as the computation routine that
computes a maximum from a given list of input values. In some situations,
visualization alone and algorithms alone do not provide a solution to a
given task. In those situations, we have to combine both powerful concepts
described in a famous quote by Leo Cherne or Albert Einstein [92] as "the

28 Creating Powerful Dashboards

computer being fast, accurate, but stupid while the human users with their
perceptual abilities being slow, inaccurate, but intelligent. Together they are
even more powerful." Such a synergy effect is reflected in the research
field of visual analytics [139, 141, 143] that includes the human users with
their tasks at hand, algorithmic concepts, visualizations, human–computer
interaction, perception, cognitive science, data science, and many more to
make it an interdisciplinary approach. The interdisciplinarity makes the field
applicable to many real-world examples, typically involving big data [205].
Figure 2.3 shows some of the most important fields that are included in the
interdisciplinary field of visual analytics [252, 251].

2.2.1 Visual variables

Figure 2.4 Visual variables [180] describe from which core ingredients a visualization is
built: Position, size, shape, orientation, hue, value, or texture are just the major ones from a
longer list.

If we talk about visualization we have to consider visual variables [21,
22, 23]. Those are the fundamental ingredients of each visualization. They
describe how the data is mapped to visual encodings, for example, color,
size, position, shape, thickness, area, volume, angle, and many more [180]
(see Figure 2.4). Using a different repertoire of visual variables for the same
dataset can affect human perception and power when solving tasks at hand
tremendously. The reason for this phenomenon is that some visual variables
can be easier interpreted than others for a certain well-defined task, but again,
this effect depends on many factors, with the perceptual abilities of the human
users as one of the most important ones. For example, quantities can be best
compared visually when they are mapped to positions in a common scale [73],
better than when mapped to angles [122]. Figure 2.5 illustrates this issue
with the example of bar charts and pie charts for the same set of quantitative
values. In bar charts, the observers can solve the task of ordering the quantities

2.2 Visualization and Visual Analytics 29

(a) (b)
Figure 2.5 Pie charts are based on the visual variable "angle" or "area" while bar charts are
based on "position" or "length" in a common scale [73] which seems to be better for solving
comparison tasks for quantities.

much faster and more accurate than in pie charts. One reason for this effect
comes from the fact that humans can judge quantities shown with the visual
variable position in a common scale, as used in bar charts much better than
using angles as in pie charts for the same task. There are various such
experiments investigating the task of which visual variable is best for a certain
situation, that is, for a task at hand for a given dataset based on one or several
data types.

Such user experiments are important to figure out if a designed and imple-
mented visualization or visualization tool, for example, a dashboard, can be
used reliably by a user group. For this reason, we can find many comparative
user evaluations taking into account the visual variables as independent vari-
ables and measuring the response time and accuracy as dependent variables
while confronting the users with typical tasks that have to be solved by
using the corresponding visualizations as stimuli in the user experiment. Even
interaction techniques [258] (see Section 2.5) integrated in the visualization
tool are typically evaluated although those user studies are much more com-
plicated due to the dynamic stimuli, that is, changing representations of the
visualizations and the typically more complicated and time-consuming tasks
to be answered. Also, eye tracking [44, 123] is a powerful technology to
find out where and when visual attention is paid to a visual stimulus, be it
static or dynamic. However, the dependent variables that come in the form
of spatiotemporal eye movement data and extra physiological measures are

30 Creating Powerful Dashboards

much more challenging to analyze, hence visual analytics with a combination
of algorithmic approaches, interactive visualizations, and the human users
with their perceptual abilities (see Figure 2.3) and their decision makings
plays a crucial role here to identify patterns, correlations, and anomalies in
the visual attention behavior. This again can help to identify design flaws in
the visual design, consequently, it also explores the combination of visual
variables and their strength as a tool to analyze data.

Exercises

• Exercise 2.2.1.1: Histograms typically show the distribution of quan-
titative values on a (numeric) y-axis. Whereas the (numeric) x-axis
stands for a scale on which the data is measured. An example would
be the number of people with a certain income in dollars. Which visual
variables can you generally identify in histograms?

• Exercise 2.2.1.2: What are the benefits and drawbacks when using
either bar charts or pie charts for visually representing a dataset with
5/10/20/50/100 quantities?

2.2.2 Perception and cognition

Even if we followed most of the design rules to create interactive visual-
izations in a graphical user interface, we can never be absolutely sure if
the designed visualization tool is useful in order to analyze and explore
data. Most problematic from a visualization perspective are perceptual and
cognitive issues, that is, those that come from the users’ side of view. Per-
ception is a powerful field of research that can be referred to the process
of attaining awareness or understanding of sensory information [244]. In
the field of visualization, this process is responsible for how well a human
user can derive visual patterns from a visual stimulus that is composed of a
multitude of visual variables like color, size, length, shape, position, area,
volume, texture, and many more [115]. The combinations of those visual
variables are responsible for creating a powerful visualization technique, one
that encodes data in a visual form, interpretable by human users to remap the
visual patterns to data patterns and, consequently, to knowledge and insights
extracted from the given data. Color perception [198], as an example, can
have a huge impact on how people extract information from a visual field.
This research field has been studied for years, with the results of the research
also being applicable to information visualization, that is, for perceptually

2.2 Visualization and Visual Analytics 31

better designed graphical user interfaces linking visualization techniques in
multiple coordinated views [200].

Cognition, on the other hand, describes how we process information in
our brains, that is, how we think about the processes to react on certain
patterns [31]. It is some kind of knowledge acquisition and thinking process
but also using experience to understand while the senses play a crucial role to
get the information we need [245, 246]. This mental action includes a variety
of aspects and functions, combined in a clever way to derive knowledge and
insights from a visual scene in a rapid manner, incorporating not only the
powerful perception again but also attention has a big impact on how we find
visual patterns and anomalies in a visual scene. By deriving those patterns
and combining them, we use the brain, our short-term [183] and long-term
memory [168], to react on the visual scene, for example, to judge about visual
effects, to reason about what we see, to solve problems, to make decisions,
or to just comprehend the visual scene and its linked aspects, for example,
to present them and to explain them to a larger audience. Hence, without
cognition, the humans were not able to extract new knowledge and insights
partially based on old knowledge, that is, experience that we got over the
years in maybe different living environments.

In particular, visualizing outliers and anomalies hidden in a dataset can
be effectively done by making use of the mighty principle of pre-attentive
processing [115, 229]. By using this visual pop-out effect it is guaranteed
that visual elements can be detected in a fraction of a second, the users pay
visual attention to them quickly, that is, in case the task is to rapidly identify
outliers that should be visually encoded in a much different way than the rest
of the visual objects, that is, in a pre-attentively processable way. There are
various such examples from the field of information visualization. The most
obvious one might be a red-colored circle in a sea of blue-colored circles
(see Figure 2.6) while the blue-colored ones are called distractors since they
distract from solving a given (search) task which is the identification of the
red target circle. In summary, one rule to create effective visualization tools
is to include pre-attentive features when the task is to quickly and effortlessly
spot the outlier(s) in a dataset that is visually represented in a certain visual
way. There are various pre-attentive features [115, 229] like color, size, shape,
hue, movement, and many more from a longer list.

Also, visual memory [115] plays a crucial role in solving tasks by using
visualization techniques. For example, for solving a comparison task, we
might first look at a visual scene, store this scene or parts of it in our visual
memory, and try to compare the stored scene with a new one. Without the

32 Creating Powerful Dashboards

(a) (b)
Figure 2.6 Visual objects can be observed while trying to solve a search task: (a) Only blue
circles. (b) Blue circles with one red circle which is called the target object, whereas the blue
ones are the distractors.

(a) (b)
Figure 2.7 Change blindness when comparing two images: From the original image in (a)
there are several differences compared to the image shown in (b).

power of the visual memory such comparison tasks could not be solved
efficiently. Change blindness [181] is a concept that describes the challenge of
detecting visual elements in one scene that are not present in another one, also
illustrated in the famous error search images (see Figure 2.7). If the reason
for not seeing the change is caused by the viewers’ missing attention, we
call this inattentional blindness [203]. For information visualization, this is a
mighty concept since we are comparing visual scenes all the time, be it for

2.2 Visualization and Visual Analytics 33

comparing two static pictures or to identify changes in a dynamic scene that
is composed of a sequence of static scenes, like in an animation or a video
stripe. In a visualization tool, we might be looking for visual patterns, and we
are typically trying to compare the observed patterns with patterns that we
have seen a long time ago, that is, we learned visual patterns and got some
experience with them. Hence, we actually build a growing repertoire of visual
patterns mapped to some meaning which are requested all the time when
we see new visual scenes. For comparing two visual scenes, we typically
use short-term memory. When we make use of experience, that is, visual
experience, we look up those patterns in long-term memory.

(a) (b) (c) (d)
Figure 2.8 Some of the popular Gestalt principles: (a) Reification: An incomplete visual
object can be completed. (b) Invariance: A deformation of a visual pattern still allows to
recognize the original object. (c) Multistability: A visual object might be interpreted in various
ways (at least two ways). (d) Emergence: A visual object or a person can be detected from a
noisy background.

(a) (b)

(c) (d)
Figure 2.9 Visual objects can be grouped in several ways: (a) Symmetry. (b) Closure. (c)
Similarity. (d) Proximity. There are even further laws like the law of good form, common fate,
or continuity.

34 Creating Powerful Dashboards

In Gestalt theory, we follow the principle of "the whole is greater than the
sum of its parts" [114, 147]. This means that our brain is not trying to see
visual scenes as composed of many small pieces, but it more or less tries to
derive complete visual patterns immediately. This powerful strategy happens
effortlessly and helps us to rapidly derive patterns. Moreover, experience
also plays a central role in Gestalt theory since already-known patterns are
found much easier and faster than patterns with which we do not have
much experience. Figure 2.8 illustrates several of the Gestalt principles like
emergence, reification, multistability, invariance, or grouping which can be
categorized into the laws of proximity, similarity, closure, symmetry, com-
mon fate, continuity, and good form (see Figure 2.9). Most of them are really
obvious, but their impact on information visualizations and how we detect
visual patterns to explore data has a tremendous impact on the usefulness of
the visualizations. This again also shows that experience plays a crucial role
in the field of visualization.

Figure 2.10 The Hermann grid illusion demonstrates how "visual objects" in the form of
gray dots can pop out although there are no such gray dots included in the image.

Also, optical illusions might occur in a visualization. For example, a
color might be interpreted as a wrong color, and hence, a data value might
be misinterpreted, like in the famous Rubik cube illusion [209]. Moreover,
visual objects might occur where actually no objects are, like in the popular
Hermann grid illusion (see Figure 2.10), in which gray dots might pop out at
the intersection points of the white gaps between the black-colored squares.
Optical illusions should be avoided whenever possible; however, in some

2.2 Visualization and Visual Analytics 35

situations, we are not aware that they might occur. They can cause misinter-
pretation issues when trying to derive visual patterns from a visualization.
There are various prominent optical illusions that can also accidentally
be incorporated into an information visualization tool, for example, in a
dashboard. Those can cause problems when judging visual elements for
parallelism, length, color coding, movement and speed, and many more [85].

Exercises

• Exercise 2.2.2.1: Find an example of error search images (Google image
search can help). Look at them and try to find the differences between
the original and the manipulated image. What is your search strategy,
that is, how do you strategically solve this task (e.g., based on your eye
movements)?

• Exercise 2.2.2.2: Draw a Hermann grid (Figure 2.10) and check the
impact of different colors, can you observe any difference depending
on the color effect? Describe your findings!

2.2.3 The role of the human users

To check if visualization tools are really useful for tasks at hand, it is
best to confront real users with such tools and measure how fast and how
accurate they are. Moreover, additionally, we could record the humans’ eye
movements [44] to get hints about visual attention that is paid to the dynamic
and interactive visual scene [151]. User studies [93, 214] in visualization have
been conducted a lot in the past, and many more will follow in the future.
The biggest issue with such user studies comes from the fact that only a few
parameters can be checked, which serve as the independent variables in the
study. The recorded user behavior, be it as response times, error rates, or
eye movements (or further physiological measures [25]), are the dependent
variables and describe which impacts a change to the independent variables
has on the dependent ones. Given a certain task to be answered by observ-
ing an interactive visualization, the independent-dependent correlation can
consequently provide insights about certain drawbacks, or design flaws in a
visualization tool. The developers of such tools try to get rid of the drawbacks,
or at least a certain improvement to this situation might be achieved based on
the users’ feedback. Apart from the independent and dependent variables,
there are plenty of confounding variables that should be controlled as good
as possible to avoid misleading or erroneous study results.

36 Creating Powerful Dashboards

The human users typically have different experience levels which make a
general claim about the usability of a visualization tool a difficult endeavor.
We might have experts or nonexperts, young or old people, visually disabled
people, and more groups of study participants with certain properties might
occur. All those factors must be checked beforehand to understand what
caused certain issues when trying to solve tasks and to make decisions, for
example, when interacting with a dashboard. In visual analytics, this situation
and the role of the human users get even more complicated since such systems
are most powerful if an interplay between humans and machines is guaran-
teed, however, the decision-making is still partially on the humans’ side. The
big challenge when using visual analytics is to build, confirm, reject, or refine
hypotheses [139] that focus on answering one or several research questions
by means of visually and algorithmically exploring data of any data type,
homogeneous or heterogeneous data, structured or unstructured data, small
or big data, and the like. Such user studies might run over several weeks of
time, as some kind of longitudinal study, maybe splitting the visual analytics
tool into several components that can or must be researched separately to
avoid blowing up the study design due to an otherwise huge parameter
space demanding for many study setup variations and hence, a really large
number of study participants to cover all possible setup possibilities. From a
study type perspective, there are various options, typically depending on the
research questions under investigation, for example, controlled versus uncon-
trolled studies, small population versus crowdsourcing studies, field versus
lab studies, standard versus eye-tracking studies, expert versus nonexpert
studies, and many more.

Exercises

• Exercise 2.2.3.1: What are typical challenges for the task of recruiting
people for a user study? How can we tackle those challenges to get as
many study participants as possible?

• Exercise 2.2.3.2: Describe the benefits and drawbacks of controlled
versus uncontrolled user studies.

2.2.4 Algorithmic concepts

Algorithms are as important as visual representations for understanding data,
based on certain user tasks like finding patterns, correlations, and/or anoma-
lies. If the data are shown visually, we rely on the perceptual strength of

2.2 Visualization and Visual Analytics 37

the human’s visual system [115, 245] to detect visual patterns that can be
mapped to hidden data patterns [65]. But in many cases, the data cannot just
be visualized. It has to be transformed and processed by efficient algorithms
(see Section 2.1) to bring it into a format that can be graphically represented
to reflect those patterns. For example, if we are interested in temporally
aggregated data, we might first compute the daily values from the hourly
values, and then, as a second step, we visualize those aggregation results [4].
Without the aggregation step, it is difficult or impossible to visually solve
the task of identifying a daily evolution pattern in the data. Also, the task
of finding group structures in a dataset, for example, in a relational dataset
like a graph or a network [194], is typically not solvable by visualizing the
data in its raw form. A clever clustering algorithm [3] might compute such
group and cluster structures beforehand and then, as a second step, visualize
the clustering results [238]. However, no matter how powerful an algorithm
is, it mostly produces another kind of dataset, from a given input dataset,
that is too complex to understand it without a visual depiction of it. For
a dashboard, it can become a problem if certain inefficient algorithms are
included in the data analysis and visualization process, since they can cause
some kind of delay in the data exploration. In some cases, the reason is just a
wrong implementation of such algorithms, but in many cases, it could also be
the case that the algorithm itself falls into a class of algorithms that has a high
runtime complexity per se. Such NP-hard problems create algorithms that are
not able to rapidly find an optimal solution to a data problem at hand. We need
a heuristic approach to the algorithm that does not compute the optimum but
a local minimum or maximum instead. Examples of such NP-hard problems
are the subset sum problem [148] or the traveling salesman problem [204]
among many others.

Applying algorithms in visualization typically means waiting for the
results of an algorithm, starting with inputs and producing outputs that are
then visualized. Another challenge is to explore the algorithm during its
runtime [62], maybe to understand why it caused a wrong result or why it
is not well performing. The algorithm itself is then of interest as a dataset.
It is not treated anymore as a black box but we more or less open this black
box to look inside, to understand what is going on, step-by-step. This can
be as simple as understanding how a sorting algorithm works [35] or how
a shortest path is found in a network [62], for example, how a Dijkstra
algorithm is walking from node to node via edge to edge in a network.
The steps taken produce a complex dynamic dataset, typically focusing on
a basic dataset like a graph/network (Dijkstra algorithm) or a list of quantities

38 Creating Powerful Dashboards

(sorting algorithms). If the basic dataset is even more complex, for example,
a neural network for which we are interested in how the weight function is
modified to find a suitable model in the network we run into a challenging
visualization problem due to the sheer size of modifiable parameters in such
a network. This example brings into play a relatively new field of research
denoted by explainable artificial intelligence (XAI) [164]. From a visual
depiction of such dynamic processes, we have two major concepts which are
animation or static representations of the dynamic data [233].

Exercises

• Exercise 2.2.4.1: Imagine you have 5 (not sorted) natural numbers. Find
a visual representation of those numbers and present the intermediate
steps of a sorting algorithm applied to those 5 numbers.

• Exercise 2.2.4.2: What is better for visualizing a running algorithm?
Animation or a static representation of the intermediate steps. Discuss
the benefits and drawbacks of each concept.

2.3 Examples of Visualization Techniques

Each dataset requires one or several visualization techniques to make it
visually exploratory by the human observers [44]. There might be a multi-
tude of visualization candidates for the same dataset, but finally, the human
observers with their tasks at hand decide if the chosen visualization candidate
is powerful enough to support them in solving those tasks. For example, a
quantitative dataset might be visually encoded into a bar chart if the task is
to compare the quantitative values by means of the visual variables height or
positions in a common scale [73]. If we have to deal with relational data,
we might choose a node-link diagram [106] consisting of circular shapes
for the objects and of straight lines for the relations between objects. This
visual metaphor is much more complex than the bar chart metaphor due to
the fact that the data type is much more complex than the quantitative data
type. Moreover, due to this complexity, there are many more options for the
encodings of the objects and the relations. For example, the objects might
be encoded in circular, rectangular, or triangular shape with different colors,
even indicating another categorical attribute on top of the objects, while the
relations can be shown as straight, curved, orthogonal, tapered, or animated
links [125] to mention a few. Even partially drawn links [60] might be an

2.3 Examples of Visualization Techniques 39

option to avoid link crossings that cause visual clutter [202] if too many of
them occur. This example shows that there is a multitude of combinations
of visual variables, all focusing on providing a visual encoding of the given
dataset that is powerful to support tasks at hand.

Not only quantitative or relational data provide a basis for visualization
candidates. Also hierarchical, multivariate, textual, and many more data types
exist, even in combination, making the choice of suitable visualization tech-
niques limited, but also offering the opportunity to combine and link various
visual variables to the visual output that someone desires. An even more
challenging aspect of data visualization comes from the fact that nearly any
part of a dataset might have an inherent temporal behavior [4]. This means
that the data is not stable or static, but it is dynamically changing over time.
This dynamics in the data brings into play comparison tasks, that is, data
analysts are typically interested in exploring if there is some kind of trend in
the data like a growing or decreasing behavior. In many cases, it is not a good
idea to just use the visualization candidate for the static data and put it next
to each other, one for each time step, to show the dynamics in the data. Such
a small multiples representation [64] is easy to implement but suffers from
visual scalability issues, and even more, the visual comparisons can become
tricky because the visual observer has to move from one snapshot to the next
one to spot the differences over time. However, still, many time steps can
be seen in one view, which is much different from an animation of the time-
dependent data [233]. In many scenarios, the visual metaphor for the dynamic
case is completely different from the one used for the static case of the same
data type.

In this section, we are going to explain various visualization techniques,
each falling into a certain category that is given by the data to be visu-
alized. Simple data types are discussed in Section 2.3.1 while graphs and
networks are the topic in Section 2.3.2 followed by a section on hierarchies
(Section 2.3.3). Visualizations for data that exist in a tabular form, that is,
multivariate or hypervariate data, are described in Section 2.3.4. Trajectories
and possible visualizations for them are explained in Section 2.3.5, while
textual data and its visual encodings are described in Section 2.3.6.

2.3.1 Visualizing simple data types

Even for simple data types, we can make a lot of mistakes during the
decision for a suitable visualization candidate that shows the data in a visually
understandable way. The tasks at hand are some guidelines for choosing

40 Creating Powerful Dashboards

the right visual metaphor with the right visual variables. For example, if a
dataset consists of five quantitative values and we want to compare those
visually, we might choose a so-called pie chart that encodes each value
proportional to an angle that spans a certain circle sector with an inscribed
area. This visual variable is actually the problem here with this radial kind
of visual metaphor [83]. Another visual variable, for example, the length or
the position is much better for visualizing quantitative values if the task is to
visually compare those values [73]. This aspect has been known for a long
time already, but still we can find pie charts in newspapers and magazines
for illustrating the results of an election for example. In most cases, the
designer of such a pie chart typically starts adding the percentage values
as textual labels to each of the circle sectors. This additional information
should mitigate the challenging situation of judging the values by areas of
circle sectors but why is visualization required at all if we start reading the
labels instead of looking at the visual variables that should help us rapidly
finding patterns. Actually, the only task that pie charts might support is the
so-called part-to-whole relationship, that is, showing how much each value
adds to 100%. In scenarios in which we have, let’s say, more than five
quantities, we might also run into problems when judging the small values
but even more, if the pie chart is rotated we might get problems for judging
how large a value is added to the 100% even if only a few values exist in
a dataset.

Looking at the example visualization in Figure 2.11, we can see that four
quantities are visually represented as circle sectors with different areas (and
angles). Additionally, the textual labels representing the percentage values
help to solve a comparison task, but what would happen if we let away those
labels? For the light red sectors it might be easy to judge and compare their
sizes reliably but the darker red sectors differ in size only a little bit (just
1.8% difference), making it perceptually hard to explore them for their size
difference with a pie chart. On the other hand, visualizing the same dataset
as bar charts make a big difference in the response time and accuracy for
the task of comparing the values for their sizes, in case we conducted a
comparative user study. The difference comes from the visual variables in
use. In the pie chart, the visual variables angle and circle sector area are
used, which make it perceptually more difficult to solve this comparison
task than the visual variables used in the bar chart which are bar length or
even just the position of the tallest point of each bar. The phenomenon of
having various options for visualizing data can be found in nearly any visual
encoding of a dataset. Finding out which visualization is best for the task at

2.3 Examples of Visualization Techniques 41

Figure 2.11 A pie chart is one way to visualize quantities, but a bar chart makes it easier to
compare the values due to the fact that it encodes the quantities in the bar lengths instead of
the circle sector angles [73].

hand can be done by conducting a user study, varying the visual variables as
independent variables and measuring the response time, accuracy, or even eye
movements [44] as dependent variables. However, this generates another kind
of dataset, in the case of eye movements, a spatiotemporal dataset for which
advanced visualization techniques and algorithmic concepts are required to
identify patterns [8].

Apart from quantitative data, we can also look at ordinal data for which
an order of the individual data elements is required. Such an order is typi-
cally visually encoded by the position on the display, for example, showing
the bigger ones on top and the smaller ones at the bottom of the display.
Categorical data describes the fact that data elements might belong to one
or several categories or classes. In a visual encoding, such categories are
typically shown by a grouping effect using the Gestalt law of proximity or
similarity, sometimes even visually drawing borders around visual elements,
for example, when applying a clustering algorithm that does not create clear
group structures but produces some group overlaps. Hence, another visual
variable has to be used to indicate the groups and subgroups.

42 Creating Powerful Dashboards

Exercises

• Exercise 2.3.1.1: Imagine you have counted the number of cars and their
brands crossing a certain measurement station at a motorway. Design a
bar chart that shows the number of cars per brand.

• Exercise 2.3.1.2: If you have additional time information, for exam-
ple, hourly, daily, or weekly measurements. How would you design
a diagram that lets you compare trends of such numbers over
time?

2.3.2 Graph/network visualization

Relational data exist in many forms but always have one aspect in common.
The idea behind such data is that it connects objects or people, that is, if
those stand in some kind of relation, we speak of relational data, or a graph to
express it in another way [18, 47]. For example, people might communicate
via a social network or they might write emails to exchange information with
each other. This scenario makes the people to the vertices of a graph and
the number of messages or the extent of the messages to weighted relations,
also called edges in the terminology of graph theory [84]. There are lots of
options to visually encode such vertices and edges [47], typically focusing
on identifying paths in a graph or exploring certain structures [106], so-
called clusters. However, to reach the goal of a good visualization of a graph,
or also called network if the edges are directed and weighted, one has to
follow aesthetic graph drawing criteria [190, 191, 192] that describe how
nice a graph looks like or even more, how well a graph can be read for
paths and clusters, hence aesthetics is understood in the sense of readability
instead of pure beauty and aesthetics [38]. Prominent aesthetic criteria in
graph drawing and graph visualization are the minimization of link crossings,
the minimization of link lengths, the minimization of node-link, link-link,
and node-node overlaps, the maximization of symmetries in a graph, the
maximization of orthogonality (i.e., size of angles at link intersections), or
the minimization of link bends (if those are used) which is just a short list of
such criteria [192].

Visualization techniques for graphs exist in two major forms: node-link
diagrams and adjacency matrices (see Figure 2.12). Node-link diagrams
model the vertices as visual representatives of certain shapes like circles,
triangles, or squares [47], while the edges are encoded as straight lines (with
or without arrowheads for indicating the direction (see Figure 2.12(a))) of a
certain thickness, tapered, partial, curved, or orthogonal links, just to mention

2.3 Examples of Visualization Techniques 43

(a) (b)
Figure 2.12 Two different ways to visually encode relational data while the edges of the
graph have directions and weights, also known as a network [106]: (a) A node-link diagram.
(b) An adjacency matrix.

a few [125]. Adjacency matrices, on the other hand, represent each vertex
twice in a row and column of a matrix while the weighted edge is visually
encoded as color-coded cell at the intersection point of the corresponding
matrix row and column (see Figure 2.12(b)). The benefit of such matrices is
that they scale to millions of vertices and edges since they do not produce link
crossings and can even be drawn in pixel size; however, reading paths from
such a representation is challenging, even impossible [106]. But identifying
clusters can be done easily, in case a matrix reordering algorithm has brought
the matrix into a good structure beforehand [20], typically requiring advanced
algorithms with high runtime complexities. Node-link diagrams are good at
showing paths in a network but, on the other hand, they suffer from visual
clutter [202] if too many links are crossing each other. There are even further
visualization techniques for graphs, for example, adjacency lists [121], but
also combinations from node-link diagrams and adjacency matrices are imag-
inable and might have their benefits for certain user tasks. Famous examples
of such hybrids are MatLink [118] or NodeTrix [119].

Exercises

• Exercise 2.3.2.1: Think about your own social network, for example,
Facebook, Twitter, or LinkedIn. How can you visually represent with
whom you and the others from your network are connected/connected
most?

44 Creating Powerful Dashboards

• Exercise 2.3.2.2: How do you represent different kinds of relations
between you and your friends, for example, knowing each other, sending
emails, calling, family relationships, and so on?

2.3.3 Hierarchy visualization

Figure 2.13 A hierarchy can be visualized as a node-link tree with a root node, parent nodes,
child nodes, and the nodes on the deepest level being, the leaf nodes.

Hierarchies [211, 212] can come in two general forms, either as some
kind of containment hierarchy or based on the principle of subordination. A
containment hierarchy leads, as the name expresses, to containing elements.
The most popular example of this is probably a file system in which files
are contained in subdirectories and again contained in other subdirectories,
actually everything is contained in a root directory. Also, geographic regions
might be considered as some kind of containment hierarchy. Regions are
contained in countries, countries in continents, and all continents belong to
the earth. On the other hand, if we look at family hierarchies [63] composed
of grandparents, parents, and children, we are confronted by the principle of
subordination which also exists in a company structure or a league system,
for example, the football leagues which consist of several levels depending
on the professionality and strength of the teams.

2.3 Examples of Visualization Techniques 45

(a) (b)

(c) (d)
Figure 2.14 At least four major visual metaphors for hierarchical data exist coming in the
form of: (a) A node-link diagram. (b) An indented plot. (c) A stacking approach. (d) A nested
representation (in which only the leaf nodes are shown).

Hierarchical data can be stored in a so-called Newick format, which
is some kind of nested parentheses format with semicolons separating the
elements on the same hierarchy level. Each hierarchy has in common that
it has a root node, parent nodes, and child nodes which stand in a parent-
child relationship. Nodes on the same hierarchy level with the same parent
are called sibling nodes, while nodes on the deepest level in the hierarchy are
called leaf nodes or leaves for short. Nodes that are neither a root node nor a
leaf node are called inner nodes. Each inner node has a number of children
which is expressed by the so-called branching factor. Actually, a hierarchy
can be infinitely deep, but for reasons of simplicity, we only look at finite
hierarchies, in this book, this is, they consist of a finite number of nodes (see
Figure 2.13 for a node-link diagram of a hierarchy).

For the visualization of hierarchies, there actually exist four major
metaphors which are following the principles of indentation, nesting, stack-
ing, or linking (see Figure 2.14). Actually, also hybrid forms are imaginable,
which combine two or more of those hierarchy visualization metaphors.

46 Creating Powerful Dashboards

Typical tasks in hierarchy visualization [224] are to visually explore if
a hierarchy is balanced, how deep it is, how the branching factor is, or
which subhierarchies look similar or dissimilar. Also data attachments can
be explored in different hierarchical granularities, for example, water levels
in a river system (which is hierarchical by nature) [65] or software metrics in a
software system (in which the hierarchy is defined by the developers) [39, 54].

Exercises

• Exercise 2.3.3.1: Create a family tree of all the people from your own
family like father, mother, grandfathers, grandmothers, sisters, brothers,
and so on.

• Exercise 2.3.3.2: Design a good visualization for the hierarchical file
system on your computer. How do you show the file sizes and the file
type in the hierarchy at the same time?

2.3.4 Multivariate data visualization

Multivariate data typically occurs if we have to deal with tables [116], for
example, given as an Excel table. Such tabular data consists of rows and
columns while the rows are so-called observations or cases, and the columns
contain the attributes or variables. At the intersection cells of each row with
a column, we can find entries that can come in numerical, categorical, or
textual form, to mention the most important ones. The form actually gives
a hint about the data type each column attribute is based on. We talk about
univariate data if just one column exists, bivariate data if two columns exist,
trivariate data if three columns exist, and multivariate data if more than three
columns exist.

The most important task to be solved when we work with multivariate
data is a correlation task. This means we are asking the question whether
two or more of the attributes stand in a correlation behavior, that is, for
example, the values under one attribute are behaving in a similar or dissimilar
way to the values of another attribute. If the values under one attribute are
increasing while those of another attribute are decreasing, we speak of a
negative correlation, if both behave in the same or similar way we denote
this behavior by a positive correlation. There are even finer differences in
the correlation behavior such as exact linear, strong linear, homoscedastic, or
heteroscedastic behavior [249], just to mention a few.

2.3 Examples of Visualization Techniques 47

(a) (b)
Figure 2.15 Visualizations for multivariate data: (a) A scatter plot matrix (SPLOM). (b) A
parallel coordinate plot (PCP).

Visualizing such data is challenging, but there are some prominent visual
encodings like histograms [185] (for univariate data), scatter plots [157]
(for bivariate data), scatter plot matrices (SPLOMs) [78], parallel coordinate
plots [130], or glyph-based representations [138] (for tri- and multivariate
data) (see Figure 2.15). Scatter plot matrices are based on simple scatter
plots and allow comparisons between all pairs of attributes as long as there
is enough display space to show all the individual scatter plots of the scatter
plot matrix. Parallel coordinate plots use parallel vertical axes to show the
attribute values and polylines in-between. Those plots only show subsequent
axis comparisons and typically suffer from visual clutter [202] caused by
line crossings. Finally, glyph-based representations only show one glyph per
case and make comparisons impossible; hence, correlation tasks are more
difficult to solve than in scatter plot matrices or parallel coordinate plots in
which the individual lines are integrated into the same diagram, and this is
not the case in classical glyph-based visualizations like Chernoff faces [72],
leaf glyphs [99], or software feathers [17].

Exercises

• Exercise 2.3.4.1: Compare typical visualizations for multivariate data
like parallel coordinates, scatter plot matrices, and glyph-based repre-
sentations like Chernoff faces, software feathers, or star plots.

• Exercise 2.3.4.2: Imagine you have an Excel table with multivariate data
that is changing from day to day. Develop a visualization technique with
which we can visually explore changes and trends in the correlation
patterns.

48 Creating Powerful Dashboards

2.3.5 Trajectory visualization

Moving objects, people, animals, or humans’ eyes create some kind of trajec-
tory [107]. That means they can rest for a while at a certain point in space,
and then they slowly or rapidly move to the next position at which they might
rest again for another while of another temporal extent. The challenging issue
with trajectories is that a visual depiction can generate occlusion effects and
visual clutter [202] very soon, in case one trajectory is quite long, and the
same spatial regions are visited from time to time, or we have to deal with
various trajectories that follow similar paths in space, leading to problems to
take one for the other due to many crossings and overlaps of the line segments
when visualized as a line-based representation. Modifying the shape of the
trajectories to reduce clutter or to show similar movement behavior, for
example, by edge bundling [124, 126], can be a powerful idea, but the original
data is spatially changed, and hence, there is some kind of lie factor in the
data-to-visualization mapping.

Figure 2.16 A static stimulus overplotted with a scanpath, that is, a sequence of fixation
points. The sizes of the circles typically visually encode the fixation duration, that is, how
long the eye fixated on a certain point in the visual stimulus.

2.3 Examples of Visualization Techniques 49

One prominent application field for trajectory data comes from the
research in eye tracking [87, 123]. An eye tracker [256] is a device that
records fixations of people’s visual attention and saccades between two con-
secutive fixations [56], that is, rapid eye movements. Each fixation can have
a certain fixation duration while the saccades in-between more or less rapidly
move between those fixations without acquiring any meaningful information
from the visual stimulus (see Figure 2.16). Also, bird or general animal
movements [146] are of particular interest for trajectory visualizations since
birds might travel far distances from one continent to another one due to
changing seasons, weather conditions, and the modifications in food offered
by mother nature. Biologists are interested in the birds’ traveling strategy to
understand how they generally behave, for example, whether they are exposed
to anomalies due to changes in their natural environments. The bird behavior
might give insights into effects that are hardly recognizable without such
trajectory data. There are various application examples in which trajectories
play a crucial role, however, visually exploring such spatiotemporal data
over space, time, and the objects, people, or animals involved in is a really
challenging task.

Exercises

• Exercise 2.3.5.1: Take into account your own moving strategy over one
day from starting the day until going to bed in the evening. Design a
trajectory visualization of such a dataset and add your own data to a
geographic map.

• Exercise 2.3.5.2: Why is it difficult to visually compare thousands of
trajectories over space and time? Can you imagine algorithmic solutions
for this problem that support the visualization?

2.3.6 Text visualization

Text is probably occurring most frequently in our everyday data lives. We
would not consider text as data, and it is more used to communicate, to
exchange information among people. But text can also be taken into account
from the data perspective, for example, trying to find patterns in it like word
frequencies which is a simple task, to explore semantic meanings of text
fragments which turn out to be much more challenging. Hence, modern
neural networks are powerful techniques to support data analysts in such
semantic-finding tasks. From a visualization perspective, there exists various

50 Creating Powerful Dashboards

text representations, with a word or tag cloud [51, 133] as one way to show
frequent words in a text corpus (see Figure 2.17). More complex ones use
pixel-based representations [142] to show the distribution of special text frag-
ments in a larger text corpus. For example, in source code of a larger software
project, one might be interested in the occurrences of special programming
language-specific keywords, for example, indicated by color coding as in the
SeeSoft tool [91] or in a triangular shape for code similarities [58].

Figure 2.17 A text corpus can also be split into words and their occurrence frequencies
while the common prefixes can be used to reduce the display space in use for showing a word
cloud, known as a prefix word cloud [51].

If we consider DNA sequences as textual data, one task might be to
identify similar subsequences in several of those DNA sequences. This can
hardly be done purely visually. We need algorithms that are able to rapidly
compare several such sequences and maybe align them in a way that sim-
ilar subsequences are placed on top of each other in a so-called consensus
matrix [71]. These multiple sequence alignment algorithms [137] can work
on any kind of text fragments, for example, as a naive way to detect plagiarism

2.4 Design and Prototyping 51

in two or more texts. However, the pure algorithmic solution is only half
as valuable if it is not supported by extra visual encodings applied to the
alignments. For this reason, color coding can be of great support to quickly
recognize similar subsequences and also anomalies, that is, subsequences that
are not fitting in the text structure.

In general, all of the data we described in this section can have a time-
varying, that is, dynamic nature. Visualizing the dynamics in the data is
of particular interest for researchers, for example, to set the current state
in context to the past, but also to learn from the past to predict the future.
The last idea could involve deep learning and neural networks to solve such
classification or prediction tasks reliably and efficiently. However, visual
depictions of the time-varying data [4] are still important, even if algorithms
have to process the data to generate structures and insights in it, maybe on
several temporal granularities.

Exercises

• Exercise 2.3.6.1: Imagine you have two different texts of a certain
length. How could you design a visualization that shows similar text
passages?

• Exercise 2.3.6.2: Could a matrix visualization be useful to compare two
or more text fragments? How can the matrix be extended to compare
more than two text fragments?

2.4 Design and Prototyping

Apart from the visualization techniques for the individual data types we
should take into account the visual and interface design rules to create a user-
friendly and powerful visualization tool equipped with various interaction
techniques [258] (see Figure 2.18 for an example of a hand-drawn user
interface). The design is typically guided by user tasks, that is, hypotheses
about the data that have to be confirmed, rejected, or refined [139, 178]. To
find answers to these hypotheses, the users of such a tool have to solve tasks
from a certain task group, for example, search tasks, counting tasks, esti-
mation tasks, comparison tasks, correlation tasks, and many more, typically
depending on the application field the data stems from and the users in the
form of experts or nonexperts who are trying to find hints about their data
problems at hand. The design of a visualization tool or dashboard is not just,

52 Creating Powerful Dashboards

including the user interface with buttons, sliders, text fields, and so on, but
also the visual design that is required to create powerful and perceptually
useful visualizations for the tasks at hand. Those user interface components
as well as the visualizations have to be arranged in a user-friendly and well-
designed layout, in the best case a dynamic one, allowing the users to adapt
the layout on their demands. Moreover, interaction techniques have to be
taken into account that connect and link the individual components. This
means the interface components must be connected in a meaningful way but
even the interface components with the visualization techniques, as well as
the visualizations themselves in case they are shown as multiple coordinated
views [200] to provide insights on the visually encoded data from several
perspectives.

Figure 2.18 A hand-drawn graphical user interface composed of several views and perspec-
tives on a dataset (permission to use this figure given by Sarah Clavadetscher).

Creating such a user interface with all of its ingredients at the right
places requires in understanding some rules about prototyping, meaning
either drawing the dashboard by hand, as some kind of sketch or mockup,
or if the designer is familiar with external tools, the dashboard might even be
designed in a computer-supported style. However, drawing it by hand typi-
cally means more flexibility for the designer than using a computer program

2.4 Design and Prototyping 53

(see Figure 2.18 for an example of a hand-drawn graphical user interface).
This section is organized as follows: In Section 2.4.1, we describe visual
design rules and which aspects are important when creating a dashboard from
the visual perspective. Section 2.4.2 illustrates some no-goes in visualization
and which concepts exist to get rid of them or at least improve the situation.
The interface design rules are explained in Section 2.4.3 while we describe
how a user interface can be created step-by-step in Section 2.4.4, also looking
into mockups, hand drawings, sketches, wireframes, and prototypes.

2.4.1 Visual design rules

Creating visualization techniques for a given dataset can be a simple but even
a challenging task, depending on how the dataset is structured, which data
types it is composed of, and which role the tasks at hand will play. No matter
how complicated the creation task gets, we should definitely follow some pre-
defined visual design rules to avoid creating diagrams that become useless or
lead to difficulties when interpreting the visually encoded data [232]. Some
of the visual design rules only occur in very specific situations, but we should
be aware of them during the creation process already and not afterward to
guarantee a more efficient design process. One general problem comes from
the fact that we have to design a visualization that allows us to rapidly detect
visual patterns [245] that gives us a chance to explore the visually encoded
data. Hence, the visual design should follow a rule that data interpretation
gets supported in a visual way. The second but less prioritized aspect during
the visual design phase is aesthetics. A diagram should look aesthetically
pleasing [38] because that it is attractive to the eye and people like to watch
it. This might help us to remember a specific diagram much better, that is,
to build some kind of mental map. The challenge with data interpretation
and aesthetics [38] comes from the fact that these criteria stand in a so-
called trade-off behavior. The better we can interpret the data visually, the
less aesthetics is involved, and vice versa. Therefore, the best strategy is to
first focus on data interpretation before we try to make it nicer.

It is important to let the data speak [34], that is, support storytelling [186].
This also means that we should not immediately start with summaries and
aggregations, a typical scenario for statistics focusing on deriving aggregated
values from a dataset like a median, a variance, or a standard deviation for
example. Showing the data in its complete nonaggregated form can help
to identify data gaps, without guiding the observer in a wrong direction,
causing misinterpretations of the data. A person inspecting a diagram can

54 Creating Powerful Dashboards

hence interpret the data in its raw form and try to interpret the data gaps,
asking questions about why the data elements are missing and in the best
case allowing to even fill the gaps with missing values. A picture of the data
is of great support to solve those tasks since a picture can say more than a
thousand words [88], in case it is designed in a proper and accurate way.
Hence, it is a good advice to use graphics whenever possible, be it for data
exploration or for presenting and disseminating the obtained results. Pictures
can even visually encode many aspects about data, like numerical values from
several attributes, in a very small display region, making it a visually scalable
approach.

Figure 2.19 A diagram that includes axis labels, scales, guiding lines, and a legend.

Even if we created a good diagram to show the data, there are very
important ingredients that one should never forget. For example, adding
labels at axes if there are some. Hence, this is important to set the data into
some general context. Such labels could express meta data like physical units
for example, or even numerical values for the scale in use, or even several
scales in use. It makes a difference if we inspect the diagram focusing on
meters or kilometers. Moreover, the scale should be including guiding lines
that do not occlude or clutter [202] the rest of the diagram. Such guiding lines
help the eye to solve comparison tasks, for example, when reading several
values in a diagram (see Figure 2.19 for a simple diagram following the
visual design rules). In general, diagrams need words to make them even
more understandable, but if too many words are used, this might again be
counterproductive. Such words or labels should be distinguishable and they

2.4 Design and Prototyping 55

should be readable, meaning choosing a good size and font style. If too many
visual variables are integrated into a diagram, and they might be unclear when
just looking at the diagram, legends should be placed next to the diagram
to explain the data-to-visualization mapping, for example for the values and
categories in use and which sizes, lengths, or colors are encoding the data
values. Color is one of the most applied visual variable in a visualization, but
picking the wrong color scales can lead to misinterpretations when trying to
interpret the data by looking at a visual depiction, for example, the often cited
rainbow colormap [32] could cause problems or colors that are problematic
for people who have color vision deficiencies or who are color blind [174].
Color perception [260] is a research field on its own. Similar rules hold
for scale granularities meaning values for minimum and maximum should
be derivable from the legend. All in all, the storytelling is one of the most
important issues when designing a good visualization. A diagram should be
readable just like a good book, following a red line, chapter by chapter, with
a final Aha effect.

Exercises

• Exercise 2.4.1.1: Create a scatterplot for bivariate data with labels, axis
descriptions, and scales, together with guiding lines for the scales.

• Exercise 2.4.1.2: Can you create a diagram that includes more than one
scale on one axis but that is still usable and readable?

2.4.2 No-goes and bad smells

There are lots of design aspects that have a negative impact on data interpre-
tation. Such no-goes have to be avoided whenever possible, in cases, we are
aware of them. Hence, it is of interest to study this section since it describes
some of the major problems, we can be confronted with when designing a
visualization. Increasing the aesthetics and beauty of a visualization does not
necessarily mean that it also gets more effective from the data interpretation
side, meaning with such a nice visualization it might still be difficult to
understand the visualization and to find visual patterns that can be remapped
to the data patterns, with the goal to explore the underlying data. When
possible, we should avoid the three major problems that we identify as visual
clutter, the lie factor, and chart junk (see Figure 2.21) [202, 232]; however,
in some cases it is hard to completely mitigate such a situation, for example,
if too many visual elements are present, and we have to show all of them to

56 Creating Powerful Dashboards

Figure 2.20 Three of the major design problems come in the form of chart junk, the lie
factor, and visual clutter.

understand the data or if the data values do not allow to encode them in a
visual variable in a proportional data-to-visualization manner, maybe due to
the lack of display space.

(a) (b) (c)
Figure 2.21 Design problems can occur in several ways: (a) Visual clutter. (b) A lie factor.
(c) Chart junk.

Visual clutter is "the state in which excess items or their disorganization
lead to a degradation of performance at some task" [202]. As the definition
says, there could be too many visual objects or a certain number of them
might not be well organized, that is, visually structured to derive some
meaning and knowledge from them. This effect typically occurs in line-
based diagrams containing many line crossings and overlaps. The lie factor
describes the situation that the effect in the data is not the same as in
the corresponding visualization, leading to visual distortions and hence, to

�

2.4 Design and Prototyping 57

misinterpretations of the data. The following formula expresses the general
lie factor l for a sequence of values vi, 1≤i≤n, vi ∈ R, n ∈ N

g
l : G × D, (g, d) →

d

while g is the size of the effect in the graphics and d is the size of the effect
in the data. Moreover, the size of an effect is given by the ratio vi−vi−1 while vi−1

vi is always the second value and vi−1 is the first value in the ordered values.
The lie factor should be between 0.95 and 1.05 to avoid distortions. Chart junk
describes the effect of having "overdesigned" a diagram, meaning the same
data variable is visually represented in several visual variables. This issue can
cause misinterpretations, mostly if 3D is used for an originally well-designed
2D diagram. One of the rules here could be: "Less is more," a fact that might
refer to Tufte’s principle of minimalism or minimalistic design, also bringing
into play the so-called data-to-ink ratio explaining the idea of using as less ink
as possible for visually encoding data elements, or the concept of maximizing
the data-to-ink ratio. Ink should not be wasted for visual objects that we do
not associate with data elements, and there should also not be any redundant
elements, maybe leading to visual ambiguities. The chart junk and data-to-ink
problems are oftentimes found in so-called infographics that try to include
specific application domain aspects into a diagram, trying to put the diagram
into a certain application context, but in most cases, decreasing the visual
usefulness of such a diagram by reducing the data interpretability aspect, for
example, perspective distortions.

Some further design aspects are to keep the visual design consistent and
to not include unnecessary modifications of the visual scale, for example
by using several scales in several diagrams depicting the same dataset. For
dynamic, that is, time-varying data, we should be careful with animated
diagrams [233] since those create a challenge for comparison tasks. Nonan-
imated, that is, static, diagrams show most of the dynamic data in one view
and give an observer time to inspect all shown time steps while reducing
the cognitive effort when comparing the data elements over time. This refers
somehow to the visual information-seeking mantra: Overview first, zoom and
filter, then details-on-demand [216]. In an animation the overview about the
data is completely lost. It is also important to inspect the data from different
granularity levels, bringing into play issues like overview-and-detail [100] or
focus-and-context [128].

58 Creating Powerful Dashboards

Exercises

• Exercise 2.4.2.1: Find a visualization or a diagram on the web that
suffers from visual clutter, chart junk, and/or the lie factor. Describe in
which form the visual design problems can be found in the visualization
or diagram.

• Exercise 2.4.2.2: Given a sequence of natural numbers v1, . . . , vn.
Design a diagram that visually encodes such values with and without
an explicit lie factor.

2.4.3 Interface design rules

Figure 2.22 A hand-drawn mockup of a graphical user interface (permission to use this
figure by Sarah Last).

Not only do the visualizations have to be taken into account when
designing and implementing a dashboard for interactive data visualization,
but even more the user interface [109] in which the visualization tech-
niques are integrated as well as additional user interface components for
applying interactions, starting algorithms, or just adapting parameters (see
Figure 2.22 for a hand-drawn mockup of a graphical user interface). A user
interface is a complex playground that has to follow a certain layout, to

2.4 Design and Prototyping 59

help preserving the mental map when finding user interface components
easily and rapidly, to reduce the cognitive efforts in case we have to start
searching for the important things all the time. The eight golden rules of
user interface design [217] describe a good way to follow the most important
principles, just like a checklist, when thinking about a user interface, even
in the phase of creating a sketch or a mockup already. The challenging
issue with a user interface for visualization comes from the fact that it is
not only dependent on those eight rules, but even more on the design and
interactive functionality of the integrated visualizations. It may be noted that
there are various design rules when it comes to designing user interfaces,
in particular, graphical user interfaces (GUIs) but many of those rules are
also dependent on the application scenario. For example, designing a user
interface for medical applications [75, 76] is much different from one for
fraud or malware detection [67], but there is some kind of common design
rule set that holds for any kind of user interface. Finally, a user evaluation with
or without eye tracking [8, 152, 153] is required to find hints about usefulness,
user-friendliness, and performances in terms of response times, error rates, or
even eye movements [26] with additional physiological measures [25]. Also,
the qualitative feedback from the users in form of verbal interviews, think-
aloud, or talk-aloud, even gestures, can be of great support for the designers,
in particular for visual analytics tools [27].

One of the first criteria is to keep the design consistent. This holds for
the color coding, for the shapes, for the presentation speed when using
animations [233], actually for any kind of visual component that includes
some kind of visual feature. Also certain actions and interactions should be
consistent for similar scenarios, for example selecting a visual element should
always work in the same way, no matter which kind of visual component
the selection interaction actually is applied on. Consistency is important
since it reduces the cognitive efforts [231], that is, users do not have to
rethink again and again for the same or similar processes, meaning the mental
map is somehow preserved [9, 10] during a visual exploration strategy. An
identical terminology should also be chosen for labels or textual output that
is produced in the interface, but not too much text should be shown to
avoid an information overload. Menus, descriptions, error messages, and the
like should follow the same rules, for example font sizes, font faces, font
types, and the like. Also the layout in the components and subcomponents
should be the same, even the borders or distances of the components to
each other, exploiting the Gestalt laws of proximity and similarity [147]. The
universal usability is also of interest, for example, a user interface can be used

60 Creating Powerful Dashboards

by Europeans, Asians, or Americans, but all having different backgrounds,
experiences, languages, signage, symbols, and the like [156]. The design must
include a dynamic nature of a user interface, for example, adapting the labels
and textual information in a user-defined language. Apart from the regional
differences, there might even be differences between experts and nonexperts,
young and old users, even visually impaired or physically disabled people
should be taken into account during the design phase [89]. Since a user
interface is interactive, it reacts with feedback to actions. This also holds for a
progress bar that shows, as the name says, the progress of a process that runs
in the background telling users how long they should be waiting for a result.
Such feedback should also be given for buttons, for example, indicating a
reaction by showing a different color of the button or showing it as “pressed”.
Longer dialogues should be split into dialogue groups to create some kind of
confidence after the completion of each dialogue group.

Even if we integrated any kind of feature into a user interface we should
avoid impossible actions by graying them out in the menu already. This
strategy leads to the positive effect that users are not able to make errors that
easily. The user interface reduces the chance to allow errors by removing
impossible actions. Related to error prevention is the guidance to certain
features by useful hints. Just in case an action was wrongly done, there should
be an option to undo this action [258]. In any case, the users should keep
the control over the user interface, however in some situations it is good if
the machine takes over and at least suggests some useful next steps [171].
This could be more important for nonexperts than for experts. Finally, the
number of things to be remembered should be reduced due to our bad short-
term memory [245]. We have a very limited capacity to store and process
information, also in the field of visualization in which we can see the objects
visually in front of our eyes. All of the aforementioned rules are useful for UI
design, but they are dependent on the application scenario as well as the dis-
play space differing between mobile phones, laptops, and powerwalls [210].
Moreover, if web-based applications are in focus, keep in mind that the users
can vary a lot, and they might have various experience levels, requirements,
and demands.

Exercises

• Exercise 2.4.3.1: In a user interface we oftentimes find so-called
progress bars to show us how long we must wait until a process is

2.4 Design and Prototyping 61

completed. Describe typical challenges when including a progress bar
in a user interface.

• Exercise 2.4.3.2: What are additional challenges when sharing a user
interface online, that is, making it accessible to all people in the world?

2.4.4 Creating a graphical user interface

A graphical user interface is something like the playground for any visualiza-
tion or visual analytics tool, but also a dashboard "lives" in there. This means
the playground builds something like the limited environment in which we
can find functions, tools, and algorithms to explore data. To keep the data
exploration tool running in a reliable way, the components have to be chosen
carefully as well as their layout [217]. The designer has to come up with a
list of features that are absolutely necessary to solve the tasks at hand and
places them somewhere in the user interface. Moreover, such features, in
the form of interface components and visualizations, have to be linked in
a clever way, by interaction techniques that the users can apply depending on
their tasks-of-interest. Although this sounds like a simple idea it can become
quite challenging, in particular, if a dashboard contains various features that
have to be placed into the limited display region in a meaningful and user-
friendly way. Before starting the implementation phase we should be able to
provide some kind of sketch or mockup of the user interface; however, we
can still make adaptations during the implementation phase. In most cases,
the originally designed user interface will not be the one that the users finally
see to explore their data. We typically learn during the design process [13]
how to improve it but we might get even more hints to improve it when real
users are working with it.

What we are going to do is creating some kind of prototype [77, 101]
of the user interface, in the best case, also including some functionalities.
The prototype is something like a template, to allow producing the tool based
on a certain visual agreement. This step is even more necessary in cases in
which the designers and the software developers are two different groups of
people who more or less work independently. The coders have to know what
to code to achieve the desired result. Each prototype is something like an
interactive mockup that can have any degree or level of fidelity [77], although
a mockup is sometimes not regarded as a real prototype. No matter how
complex a prototype will be, the goal is always to explore issues like used
material, costs, developers involved, time to create the tool, or in which way
the tool will be developed, with which components and which functionalities.

62 Creating Powerful Dashboards

By creating a prototype, we get a better understanding of the final product
and which modifications must be made, in any stage during the development
phase to keep the tool in the desired form. Also aspects like consistency
and structuring are required during the development phase. Moreover, it
might be of particular interest to think about which output device or display
(see Section 2.5.3) the user interface will be shown on and which technical
functionalities are possible, for example, from the perspective of interactions,
we might consider mouse, keyboard, voice, gesture, or gaze interactions, just
to mention a few (see Section 2.5.2).

A prototype can be hand-drawn, or it can be created by means of a
software. If we draw a prototype (or mockup, sketch) by hand, we have a
higher degree of flexibility than if we used an external software for which we
have to understand the useful features first. Drawing by hand is something
that we already learn in the first years of our lives, hence we might feel more
comfortable with that. The fidelity [77] describes how detailed a prototype
is, for example, is it just a static picture or is it already dynamic, and we
can interact with it to some degree. The fidelity gives an impression of how
far we are away from the final product [96]. With a prototype, it is easier to
imagine the final product than when reading pages of text describing all the
components, features, and functionalities. By showing a prototype it is also
easier for possible customers to imagine how the final product will look like
and if they are confident with the design developed so far; hence, it accelerates
the decision making of the customers. A prototype is something like a visual
language that both the designers and the customers understand, to come to
a common agreement before starting the development phase. Actually, there
are several ways to create a form of a prototype, depending on the fidelity,
that is, how far we can get to the final product. Those could be described as a
sketch or hand-drawing, a wireframe, a mockup, a real prototype with lots of
functions, and after that, we reach the final software with all of its functions
and interactions.

There is a list of design tools and software to support the designers
when creating user interfaces [16]. Those tools range from classical graphic
drawing programs for 2D and 3D graphics to more prototype-like soft-
ware systems full of features. Some of the tools are Justinmind, Mockplus,
Adobe Photoshop, Sketch, Adobe XD, Figma, UXPin, InVision, Omnigraffle,
Axure, Lucidchart, Proto.io, Marvel, Microsoft Visio, Miro Moqups, AFFIN-
ITY Designer, Adobe Illustator, Inkscape, Xara Designer Pro X, MockFlow,
Gravit Designer, Fireworks, or Cinema 4D, just to mention a few from a really
long list.

2.5 Interaction 63

Exercises

• Exercise 2.4.4.1: Describe and discuss the benefits and drawbacks of
designing a user interface by hand, including visualization techniques.

• Exercise 2.4.4.2: Draw a user interface for visually depicting social
networks consisting of people who are related to some extent.

2.5 Interaction

Without interaction a visualization would just be a static picture that can,
in its static form, be powerful as well but awaking it to life by allowing
interactions [258] provides many more opportunities to dig deeper into
the visualized data, to navigate in it, to modify views, to filter the data,
and to inspect the data from several, even linked, perspectives [200, 222].
Interactions do not only depend on the used visualization techniques, also
on the displays and the experience levels of the users, also on the fact if
the users might suffer from visual, perceptual, or physical disabilities. For
example, interacting on a small-scale display when using a smartphone is
much different than interacting on a medium-scale computer monitor while a
large-scale powerwall display [210] even allows walking around during inter-
actions. There is no best display for interactions, each of them has its benefits
and drawbacks and requires suitable technologies to make the implemented
interaction techniques run smoothly, for the task at hand. Not all interaction
modalities like gaze, touch, mouse, keyboard, gestures, and the like, can be
applied to any kind of display, for example, on a small-scale smartphone
display it is more likely to interact by touch than by using a computer mouse.
Moreover, on a large-scale powerwall display, it is beneficial to allow gesture,
gaze, or body motion interactions than relying on touching the powerwall
with one’s fingers. Touch means standing very close to the display which, on
the other hand, would mean walking around a lot in front of the powerwall,
with a high chance to miss important details due to a lack of overview.

Even more advanced technologies like virtual, augmented, or mixed
reality can bring new challenges for interaction techniques. In particular, the
field of immersive analytics [173] demands for a combination of interaction
modalities, also requiring to be applicable on many linked displays, maybe
with various users in front of those displays [80], with the goal to visually and
algorithmically allow explorations and analyses of data from a multitude of
application domains. Not only the ingredients directly related to interaction
like the displays, modalities, the users, or the linking of the user interface

64 Creating Powerful Dashboards

components are crucial ingredients, also the data processing and transforma-
tion, running in the background build a huge and crucial part of a visualization
tool. If the data structures and algorithms are not properly chosen and imple-
mented, interactions cannot run smoothly and quickly, hence the interactive
responsiveness would suffer from the badly designed algorithmic approaches
when it comes to data handling like storing, accessing, and manipulating it,
either offline or online as a real-time data visualization. We argue that creating
a visualization tool or a dashboard for data exploration and data analysis
is some kind of interdisciplinary field that requires expert knowledge in
many related disciplines like visualization, interaction, user interface design,
perception, but also in data structures and algorithms, programming, software
engineering, and many more. Making design mistakes in any of such related
disciplines can cause performance issues that might make a visualization tool
unusable.

In this section we describe major interaction categories that we can find
in nearly any data visualization tool (Section 2.5.1). These interactions can be
combined in various ways, typically depending on the user tasks. Moreover,
Section 2.5.2 illustrates which kind of modalities exist and in which scenario
they might be the best options to integrate with a visualization tool. The
most important ones might be given by gaze, touch, mouse, keyboard, or
gesture. Also the display on which a visualization tool should be shown
plays a crucial role (Section 2.5.3), not only for the visualizations alone
but also for the interaction techniques and interaction modalities. Finally,
data can be explored best if it is shown from several perspectives, bringing
multiple coordinated views into play. Those are described in more detail in
Section 2.5.4.

2.5.1 Interaction categories

Each individual interaction falls into a specific interaction category that
describes the way how we interact, not on which display and with which
interaction modality. For example, changing a visual variable in a visual-
ization, like the color from a blue-to-red color scale to a topographic one,
could be considered another visual encoding, hence it is showing something
new about the data. This means that all changes in color scales, but even
more, all changes of the visual encoding fall into this specific interaction
category. Following this idea, we might come up with at least seven different
interaction categories [258] that can be described as selecting, exploring,
reconfiguring, encoding, abstracting, filtering, and connecting. Moreover, an

2.5 Interaction 65

eighth interaction category might be useful to include all changes to the
exploration process itself, not directly to the visualization, which takes into
account interactions like undo or redo, those that are typically more high-
level interactions being applicable to sequences of interactions. The history
of interactions also plays a role here, for example, to allow jumping back
to a certain point during the exploration process, allowing to step back to
any kind of former visualization tool configuration. This eighth category
of interactions is typically applicable from the user interface directly and
in most situations, shortcuts can be used to faster apply them, in case the
users became more and more familiar with a visualization technique or user
interface, that is, they changed their roles from nonexperts to experts in
some way.

Figure 2.23 On a visualization depicting value changes over time, we can select a certain
point, for example, to get detail information or to further use the selected data point in the
exploration process.

The seven standard interaction categories include selecting visual ele-
ments (see Figure 2.23) as one of the most basic interaction techniques.
Without selecting an element, we are typically not able to apply further
interactions; hence, interactions build something like an interaction chain or
interaction sequence. In cases, we even allow the undo of interactions we do
not get a sequence of interactions anymore but something that looks more like
an interaction hierarchy. Actually, not the interactions create a hierarchy, but
more the states of the visualization tool that we are going to modify during
the interaction process. Even more, allowing to reach the same state again
after having applied many of those interactions, we get a graph or network
of tool states that describes which states are reachable by which interactions
that model the edges of this graph/network [41]. Exploring means to look

66 Creating Powerful Dashboards

around, that is, to change the view, for example, when scrolling or panning in
a visualization that does not fit on the display. This interaction category helps
when an overview cannot be provided in one view. Reconfiguring describes
the effect of changing a visualization to make it usable for a certain task
that could not be solved without the change. For example, adjusting visual
elements to a common scale to make them comparable would be a useful
feature, maybe using a baseline adjustment technique. Encoding actually
allows to modify the visual variables to get a different perspective on the
data while abstracting means to show more or less detail, like in zooming
techniques. In cases in which only parts of the data are shown, maybe only
those parts that follow a certain user-defined condition, we talk about filtering.
Finally, connecting describes the way we link views in a visualization tool,
with the goal to inspect the data from several perspectives at the same time,
that is, simultaneously, for example, in a multiple coordinated view [200]
described in Section 2.5.4.

Exercises

• Exercise 2.5.1.1: How would you design an interaction technique for
selecting one point, several points, connected regions, or points in a
previously selected region?

• Exercise 2.5.1.2: How would you design an interaction technique to
select a pixel, a group of pixels, a line, or a group of (possibly
intersecting) lines?

2.5.2 Interaction modalities

When interacting with a visualization tool, we need some kind of input chan-
nel as well as an output channel, both are required to allow a dialogue between
a system and its users. As an example we might consider mouse clicks as
the inputs and the visible impact of these clicks on a computer monitor, that
is, this input–output build a modality when interacting on a computer mon-
itor in a mouse-based user interface. Human–computer interaction defines a
modality as a class of an individual channel of sensory input/output between
a machine and human users [12] while there exists a difference between
allowing only one modality (unimodal) or several of them (multimodal).
There is a list of modalities ranging from keyboard, joystick, mouse, pointing
device, touchscreen, speech recognition system, motion- or gesture-based
system, or gaze-based ones, just to mention a few very popular modalities.

2.5 Interaction 67

Unimodal modalities might be easier to apply and easier to implement in
a visualization system, but can also become a limitation for certain tasks.
For example, only using gaze-based interaction can cause problems due to
the so-called Midas Touch problem [239] which is quite popular in the field
of eye tracking [44, 86, 123]. Hence, further modalities are integrated like
speech recognition, meaning if a person is looking around in a user interface
nothing is activated by gaze only, but speaking out a certain kind of command,
for example "press button" can start a specific interaction. This is somehow
related to modern mobile phones on which speech recognition is implemented
in the form of deep learning approaches, for example awakening a mobile
phone to life by just saying "Hey Siri." Such a wake word [103] concept opens
another way of interacting with such a system, although it slept before in a
stand-by mode and only allowed the more traditional interaction modalities
with the phone.

Figure 2.24 Interacting by using a computer mouse is one of the standard interaction
modalities for visualization tools displayed on a classical computer monitor.

In a visualization tool we typically find the classical interaction modalities
like a computer mouse (see Figure 2.24) and a keyboard, but also touch is
possible depending on the fact that a touchscreen is used. However, touch
can be problematic due to the humans’ fingers that might cover certain tiny
visual objects of pixel size and hence, the underlying information cannot
be explored anymore [189]. A mouse cursor is much better in this scenario

68 Creating Powerful Dashboards

since it does not cover that much information than a human finger would
do. Negatively, we can identify the problem of having a mouse not directly
connected to the visualization system, that is, we have to understand the
properties of a mouse on the desk first before we can apply it to the computer
monitor. Touching with the finger is much more natural but it also brings new
challenges into play, apart from the covering effect it creates some indirect
body-to-body touch effect between human users, for example in cases in
which many people use the same service like a ticket machine placed in
a train station. This might cause negative issues, in particular during the
COVID-19 pandemic, trying to avoid as many human-to-human contacts
as possible [240]. Sure, we cannot ask people to bring their own computer
mouse but we could integrate other interaction modalities like gaze-based
interaction or speech recognition, however speech might be a problem in a
noisy background like in the scenario of a ticket machine in a crowded train
station and gaze causes problems related to the Midas touch problem and
technological issues related to fixation accuracy.

Exercises

• Exercise 2.5.2.1: What are typical scenarios in a visualization tool that
might be good candidates for using speech recognition as an interaction
modality?

• Exercise 2.5.2.2: Imagine you have a visualization tool in which gaze-
based interaction is integrated. What could be a challenging problem
here? Hint: Midas Touch problem.

2.5.3 Displays

Each visualization tool must be presented somewhere, meaning a certain kind
of display [165] is required to let the users see where they can apply an
interaction for example and which impact such an interaction will have on the
diagrams but also on the visual components of the user interface. There are
various ways to display the visualizations that have been created, typically
depending on the tasks to be solved and which visualizations are finally
integrated into a visualization tool. For example, if many users are required
we should create a web-based visualization tool that runs on a mobile phone,
possibly being able to recruit many people since many of us own a mobile
phone, even allowing crowd-sourcing user experiments [197]. However, the
display itself is much smaller than the one of a standard computer, hence

2.5 Interaction 69

Figure 2.25 Showing a geographic map on a large-scale display while the observer is
equipped with an eye tracking device for either exploring where he is paying visual attention
or for using the eye tracker as gaze-assisted interaction (figure provided by Lars Lischke).

the visualization tool itself must be designed in a different way than the one
designed for the standard computer monitor. If many users have to explore
a dataset visually at the same time, it might be a good idea to use a large-
scale display [166], that is, a powerwall [210], allowing many people to
collaboratively work on similar data analysis and visualization problems.
A large display can also be useful for one observer, in cases in which an
overview has to be given with many small integrated details (see Figure 2.25
for a geographic map on a large-scale display). The biggest issue here might
be to merge the different findings of all the collaborators to find a common
result, maybe in form of visual patterns that graphically model data patterns.
The display plays a crucial role during the design but also the implementation
phase. Large-, medium, and small-scale displays can make a difference not
only for the visual and interface design but even more for the interaction
design. Not every interaction technique that is applicable on a computer
monitor can be applied in the same way on a mobile phone or on a powerwall.

Whether or not an interaction modality makes sense and is useful on a
certain type of display depends on several aspects, also on the environment
like noise in the background making speech more difficult to be applied,

70 Creating Powerful Dashboards

but there are some scenarios in which it is clear that a certain setup is not
meaningful, for example using a computer mouse on a powerwall display
(see Table 2.1 for a general overview about meaningfulness).

Table 2.1 Displays for which standard interaction modalities make sense or not: (++) very
meaningful, (+) meaningful, (o) not clear, (-) not meaningful, and (–) not meaningful at all.

Display types and interaction modalities
Small-scale Medium-scale Large-scale

Mobile phone Computer monitor Powerwall
Mouse – ++ –

Keyboard + ++ –
Joystick – + -
Touch ++ + +

Gesture - o ++
Speech + + ++
Gaze + + +

Exercises

• Exercise 2.5.3.1: Discuss the differences of the usefulness when integrat-
ing interaction modalities like touch, gaze, mouse, keyboard, joystick, or
gesture into different types of displays like small-scale displays (mobile
phones), medium-scale displays (computer monitors), and large-scale
displays (powerwalls).

• Exercise 2.5.3.2: Which kinds of displays are most useful for visualiza-
tion tools, that is, dashboards? Discuss benefits and drawbacks.

2.5.4 Multiple coordinated views

A visualization tool rarely contains just one view on the data, it merely con-
sists of many perspectives with different diagram types based on a multitude
of parameters. In cases in which multiple of those views are integrated and in
which the views are connected while the users are interacting we denote them
as multiple coordinated views [200]. Depending on how large our display is
we can integrate more or less views on the data being connected in the back-
ground in efficient data structures making a data handling possible to provide
a fluent interactively responsive user interface. One specific interaction con-
cept denoted by brushing and linking [243] is typically included, allowing to
select a certain number of visual elements in one view that are then visually
highlighted in all of the other views in which they are represented as well.

2.5 Interaction 71

Brushing can be regarded as the operation of selecting one or a number
of visual elements, maybe selected in a region, while linking describes the
effect of seeing them in all of the other views in which they are existent,
hence the multiple views are coordinated in some way, also depending on the
users and the fact how they use the coordination. Multiple coordinated views
(see Figure 2.26) can be found in user interfaces in medium- or large-scale
displays [158], but less in small-scale displays like mobile phones due to the
limited display sizes. By using multiple perspectives we hope to show visual
patterns in different ways making them pop out in some views and in some
others they might be invisible. Hence, the chance of seeing the visual patterns
gets higher when providing multiple views instead of just one.

Figure 2.26 Several perspectives on a COVID-19 dataset in a multiple coordinated view
(figure provided by Sarah Clavadetscher).

A big challenge for multiple coordinated views comes from the fact that
the data handling has to keep all of the views up-to-date, that is, a certain
control mechanism has to run in the background that updates all of the views
when just one gets changed. Such a model-view-controller architecture can
be quite useful in such situations. The controller keeps track of the changes
and sends updates to keep the visualization tool consistent in all of the
perspectives and views. This can also include user interface components not
just the views in the visualization tool. For example, updating a visualization
could also cause to modify or update the visual appearance of buttons or
sliders, in cases in which the range of values got changed based on a user
interaction it would make sense to also avoid that the users can select the

72 Creating Powerful Dashboards

wrong value ranges in cases in which the range sliders would not have been
updated. Views should not be changed abruptly since this would destroy the
users’ mental maps [150], hence in case changes have to be made to one or
several views, those should be done smoothly, for example including some
kind of smooth animation [242] to allow users keeping track of the changes,
a typical scenario in which arrangements of visual elements have to be made,
maybe caused by a new ordering or alignment strategy.

Exercises

• Exercise 2.5.4.1: Which role plays the data handling running in the
background when interacting in multiple coordinated views?

• Exercise 2.5.4.2: How many views can be integrated in a visualization
tool at the same time? Discuss.

3
Python, Dash, Plotly, and More

There are various ways to implement a visualization tool, even in the form of
an interactive dashboard [255]. The focus of this book is on the program-
ming language Python [160], combined with Dash and Plotly which will
be described in detail in the following sections. Python is a popular high-
level programming language with a specific focus on code readability by
making use of mandatory indentation rules. It supports a certain number of
programming paradigms, typically the functional and object-oriented ones.
One of the great benefits of designing and implementing visualization tools
as dashboards in Python is the fact that the created tool can be made publicly
available in an easy way by deploying it on a server, hence making it
accessible for a number of people all over the world [201]. This again requires
a user-friendly design solution that takes into account the various differences
in spoken and written languages, cultures, signage, and the like, which is
also reflected in the eight golden rules for designing user interfaces (see
Section 2.4.3) [217]. Moreover, other design rules, focusing on the visual
design (see Section 2.4.1) [232], are also crucial ingredients when building
such web-based solutions for data visualization tools.

Including the important aspects from the field of visualization, visual
analytics, interaction, algorithmics, and the many related disciplines of this
interdisciplinary topic [144], we are now prepared to learn about the concepts
required to actually start building a tool [172], once the design phase has
been completed. This does not mean that the design phase is really over.
In many scenarios, we still learn about the usefulness of a certain feature
when it is really applied in the running tool or even when we think about
it again in a discussion, and hence, there should always be an option to
redesign what we have created before (at least partially), until we and our end
users are confident with the results [214]. This actually brings into play user
evaluation [152], that is, the users can either be on board during the design
phase and even implementation phase or they can test the final product, that is,

73

74 Python, Dash, Plotly, and More

after it has been completed, based on the design criteria and requirements that
we got so far. This again means that starting with an original sketch, mockup,
or prototype (Section 2.4.4), we are able to modify this prototype based on
user interventions until all involved parties are confident with the result. To
reach this goal of a running tool, we actually provide the major ingredients in
this chapter before we discuss code examples in the programming language
Python in its own chapter (see Chapter 4).

First of all, we introduce the necessary technologies, programming lan-
guages, and libraries (Section 3.1) like Python, Dash, and Plotly, as well as
further ingredients and concepts, before we move to important installations
and options to actually get started to efficiently and effectively develop and
implement what we have designed (Section 3.2). Here, we look into differ-
ent modes like the interactive one, including the Jupyter Notebook mode,
and the integrated development environment (IDE) mode. The interplay
between all of the formerly described implementation concepts is illustrated
in Section 3.3 with the subconcepts of data reading and parsing, data trans-
formation, Dash core components, Dash HTML components, cascading style
sheets (CSS), Plotly, and callbacks that more or less build the interface
between the visualization techniques and the user interface, that is, the
dashboard. The web-based solution is described in Section 3.4, with several
options to get it running online.

3.1 General Background Information

There are several ways to create a visualization tool, full of algorithmic
functions and interactive graphics, with the human users-in-the-loop. In this
book, we mostly focus on the programming language Python, Dash, and
Plotly to describe one possible way to build such tools. Python is chosen
since it is taught in many university courses and hence, students are already
familiar with the most important programming constructs [52]. Plotly as a
way to create interactive diagrams, is based on Python code and can be
learned easily, in particular, if the suitable visualization techniques are already
introduced and described earlier as in this book (see Section 2.3). The same
holds for the interaction techniques [258] that are integrated to some extent
into the corresponding Plotly diagrams. Interaction techniques have been
described in this book as well (see Section 2.5.1). Finally, Dash is a way
to create dashboards, consisting of various interactive diagrams, algorithmic
concepts, and user interface components, with the goal to build tools for
data analysis and visualization, that is, visual analytics tools as well. Dash is

3.1 General Background Information 75

some kind of framework focusing on the programming languages Python, R,
and Julia.

In this section, we first introduce general aspects of the programming
language Python (Section 3.1.1). The more programming-specific code con-
structs that are required to create our dashboards, given in Chapter 5, will
be explained in a tutorial in more detail in Chapter 4. We will also focus
on the framework Dash in Section 3.1.2 before we describe and illustrate
some Plotly diagrams in Section 3.1.3. Finally, we will discuss further not
already described ingredients that might be interesting to create dashboards
(Section 3.1.4).

3.1.1 Python

The programming language Python already exists for quite a while, and
it was developed in the late 80s by Guido van Rossum while 1991 it got
released as version 0.9.0 [236]. Python 2.0 and 3.0 followed in the years
2000 and 2008, respectively, including further improvements and extensions.
During the writing of this book, Python 3.10.4 and 3.9.12 were available.
Python is considered a high-level programming language that can be applied
in various application domains, with data science [223] as one of the major
ones in these days. Popular features of the language are the use of explicit
indentation to make the code more readable and maintainable. For example,
Python also avoids many opening and closing parentheses due to its indented
code structure. The type system of Python is described as being dynamic,
meaning data types do not have to be explicitly specified as in other pro-
gramming languages like Java or Pascal. Moreover, several programming
paradigms are integrated into Python with functional and object-oriented
styles, as being the most obvious ones. Also, the procedural, aspect-oriented,
or logic programming paradigms can be found here and there. Libraries
can be imported to extend the degree of functionality a program can under-
stand, ranging from classical algorithmic data processing libraries to graphics
libraries and many more. Given the fact that Python is frequently used
from data scientists, it is typically considered as one of the most well-
known languages with a large programmer community, eager to help when
programming issues occur that cannot be solved by one’s own knowledge
and experience. However, Python code is typically quite clear and reduced
to a minimum (see Listing 3.1 for an example consisting of a few lines of
Python code).

76 Python, Dash, Plotly, and More

1 c o l o r s = [" red " , " blue " , " green " , " ye l low "]
2 ca r s = ["BMW" , "VW" , "Mercedes"]
3

4 f o r x in c o l o r s :
5 f o r y in ca r s :
6 pr in t (x , y)

Listing 3.1 A code example for a running Python program printing 12 pairs of colors and
car brands in code line 6.

Exercises

• Exercise 3.1.1.1: Find other programming languages in which a dash-
board or a visualization tool can be implemented. What are typical
libraries required to create a visualization tool?

• Exercise 3.1.1.2: What are typical negative issues when using Python for
creating a visualization tool?

3.1.2 Dash

Dash does not cost anything, is available as open source, and is created
by the company Plotly as a framework to build web applications, typically
with a focus on data analysis, visualization, and visual analytics tools. The
major programming language which is supported in Dash is Python but also
other ones like R or Julia are imaginable. Dash is actually created on React,
which describes a well-known web framework in the programming language
JavaScript. Moreover, it is also based on Flask, which is a well-known web
server focused on Python. Before working with Dash, we have to make some
installations, for example, when using conda (see Listings 3.2 and 3.3). In
cases, Anaconda is not already installed, we refer to Section 3.2.

1 pip i n s t a l l dash

Listing 3.2 One way to install Dash on your computer.

1 conda i n s t a l l dash

Listing 3.3 Another way to install Dash is by using conda. Make sure that conda is already
installed.

A very simple code example will generate our first application (line 4 in
Listing 3.4) after having imported Dash and the Dash HTML components
that are required in the layout of our webpage, given by app.layout in line 6.
At the moment, this just contains a headline in H6 HTML size saying "Hello

3.1 General Background Information 77

World in Dash" but in the future, this is the place in which we can integrate
many more HTML features, just like in the case when structuring a webpage
like our own homepage. Finally, in line 9 of Listing 3.4, we will start the
server.

1 import dash
2 from dash import html
3

4 app = dash . Dash (__name__)
5

6 app . l ayout = html .H6(ch i l d r en=" He l lo World in Dash")
7

8 i f __name__ == "__main__" :
9 app . run_server (debug=True)

Listing 3.4 An application showing how to create a simple layout and to start the server with
further required ingredients such as needed imports at the beginning.

We could even compile or execute this program, for example, by using
a Jupyter Notebook [184], which hopefully results in a message returning
a URL for using in a web browser to see the results of our program.
This message tells us that we started a Flask server on our own com-
puter, that is, locally not remotely, which is typically run under the URL
http://127.0.0.1:8050. You can start this program only on your own computer
since this URL belongs to the so-called localhost. We have created our first
webpage, but we have to admit that it is still too early to speak of any success
in the sense of having implemented a dashboard. However, with this simple
example, we are already prepared for much more complex dashboards.

Exercises

• Exercise 3.1.2.1: Modify the code example in Listing 3.4 to show a much
larger text saying, "Hello, now the headline is bigger."

• Exercise 3.1.2.2: Why is HTML alone not the best choice for creating a
user-friendly and aesthetically appealing dashboard?

3.1.3 Plotly and Plotly Express

Also, Plotly is available as open source and describes a library usable in
the programming language Python. Based on a lot of experience in visu-
alization and programming courses at several universities we can say that
Plotly is easy to understand and makes it simple to get started in dashboard
programming [42, 43, 52] since the newcomers in the field do not have

http://www.127.0.0.1:8050

78 Python, Dash, Plotly, and More

to learn to create visualizations pixel-by-pixel but Plotly already comes
with fully fledged diagrams equipped with the most important interaction
techniques [258]. This saves a lot of time in a visualization course [45] that
would otherwise be wasted when trying to build diagrams or charts from
scratch. Plotly.express, on the other hand, describes some kind of wrapper for
Plotly to make it even simpler to use and to equip it with even more features.
Plotly.express also allows to create a visualization in one or a few lines of
Python code, for the same result, we might have needed many more lines of
code in other programming languages like Java or C++. We might say that
with Plotly.express the writing of the code is simpler due to its easier syntax
in use, meaning instead of coding a few lines one after the other, typically just
one line of code is required with the desired parameters given in parentheses
(see Listing 3.5 for an example of code with which we can create a simple bar
chart in Plotly.express, the corresponding diagram is shown in Figure 3.1).
After the installation of Plotly Express (or Plotly.express) we only need to
import it in our Python code (see line 1 in Listing 3.5) to get started for
creating interactive visualizations in Python.

1 import p l o t l y . expre s s as px
2

3 df = px . data . t i p s ()
4

5 f i g = px . bar (df , x="smoker" , y=" t o t a l_b i l l " , c o l o r=" t i p ")
6 f i g . show ()

Listing 3.5 A simple example of code for creating a bar chart in Plotly from the tips dataset
with extra categories like "smoker" versus "nonsmoker" and color coding based on tips.

Plotly Express comes with a lot of benefits but on the negative side
it also has to deal with problematic issues. On the beneficial side we can
mention that each plot can be built with just one or a few lines of code,
just parameters, attributes, and flags have to be adjusted to obtain the desired
functionality and the visual variables of interest like a specific color coding,
certain shapes, or sizes, and the like (see Section 2.2.1). Moreover, the
generated plots are already equipped with interaction techniques ranging
from selection, zoom and filter, or details-on-demand (see Section 2.5.1).
Even animated diagrams [84, 233] can be created for a certain variable in use,
for example, a time attribute or any other attribute that is given with different
values or value categories. The Plotly Express world would be wonderful
if it had not some major flaws that might make someone think about using
other options for creating interactive graphics in Python or even in a totally
different programming language. One big negative issue comes from the fact

3.1 General Background Information 79

Figure 3.1 The result when executing the code in Listing 3.5. A color coded bar chart
distinguishing between two categories smokers and nonsmokers as well as different tips for
total bills.

that Plotly Express does not support all possible features that one desires.
Although color coding works, for example, it can be a disaster if someone
wants to assign exactly the same colors to pre-defined categories each time
a plot is created again and again. Also for the zooming feature there is no
way to solve the focus-and-context or overview-and-detail problems [195] as
other advanced visualizations typically do. Plotly Express is mostly used by
data scientists who need a quick visual support to their data science problems
at hand, hence it is more focused on exploratory data analysis, missing many
features that visualization or visual analytics experts would require for their
data analyses.

Exercises

• Exercise 3.1.3.1: Modify the code in Listing 3.5 to show male versus
female instead of smokers versus nonsmokers. The attribute for this is
called "sex" instead of "smoker." Visually explore the created diagram.

• Exercise 3.1.3.2: Modify the code in Listing 3.5 to show the tips on the
y-axis and the total bill in the color coding of the diagram. Compare the
new plot with the one in Figure 3.1.

80 Python, Dash, Plotly, and More

(a) (b)

(c) (d)
Figure 3.2 Several graphics libraries for creating diagrams in Python: (a) Plotly Express.
(b) Matplotlib. (c) Seaborn. (d) Bokeh.

3.1.4 Further ingredients and concepts

Apart from Plotly Express we can find more graphics libraries in
Python [120], all of them having advantages and disadvantages (see Fig-
ure 3.2 for a comparison of the same diagram type plotted by means of
several graphics libraries, Figure 3.3 shows a visual result for a geo-related
library). Some of the popular ones are matplotlib, Seaborn, ggplot, geoplotlib,
or Bokeh. Actually, based on feedback from more than 1000 students in
visualization courses [52], we can say that none of the aforementioned
libraries is really difficult to use, given the fact that the users already have
some prior expertise in programming (they do not have to be experts), in
particular in Python. The only question that remains is which library is
the best one for which purpose, a question that is quite difficult to answer.
However, we can at least provide some kind of discussion on a comparable
basis. Some of the aforementioned libraries already exist for quite some years

3.2 Installations and Options 81

Figure 3.3 Using Geoplotlib [79] for geo-related visualizations.

while Plotly Express came on the market in 2019. Matplotlib is one of the
most used visualization libraries in Python, not only because it is quite old,
compared to the others but also because it supports interactions in a multitude
of simple diagrams like histograms, scatterplots, pie charts, and many more
(see Section 2.3). Seaborn actually makes use of the Python structures for
handling data such as pandas and numpy. Moreover, it also supports simpler
charts, for example for statistical approaches and results. ggplot is actually
based on an R implementation of ggplot2 while ggplot is also beneficial for
simple plots while at the same time allowing to integrate visual variables
like color, size, shape, and so on, however, the interactions are quite limited.
The specific application domain of geography is supported by geoplotlib that
offers many ways to depict geographical data in maps. Bokeh is also popular,
but its charts and plots are rendered by making use of HTML and JavaScript,
making it a good choice when creating web-based visual solutions.

Exercises

• Exercise 3.1.4.1: Create a scatterplot with each of the visualization
libraries. Which one do you think is the most aesthetically appealing
one?

• Exercise 3.1.4.2: Which of the diagrams from above allow interactions
and which kinds of interaction categories [258] do they support?

82 Python, Dash, Plotly, and More

3.2 Installations and Options

Before we can start, we should bring our working and programming envi-
ronment to a suitable state to implement the designed dashboard [145]. For
this reason, it is important to take into account all possible ingredients to
setup the programming tools in the right order. Python can be run in several
ways, for example in an interactive mode, in a Jupyter Notebook mode,
that is, interpreter-like mode, or in an integrated development environment
(IDE) such as PyCharm or Spyder. Depending on which operating system
we are using, like Windows, Linux, or MacOS, it might make a differ-
ence to get Python running on our computer. Anyhow, we recommend to
install Anaconda (https://docs.anaconda.com/anaconda/install//) first while
we might verify our installation afterward (https://docs.anaconda.com/ana-
conda/install/verify-install/). Table 3.1 illustrates for each of the popular
operating systems how to find and start Anaconda. Once Anaconda is started
we can find useful tools to implement and debug Python code.

Table 3.1 Finding Anaconda to get started in the desired operating system.
Anaconda in a specific operating system

Operating system How to find Anaconda?
Windows Start ⇒ Anaconda Navigator
Linux Terminal ⇒ anaconda-navigator
MacOS Launchpad ⇒ Anaconda Navigator

In this section, we will focus on three modes in which we can start
implementing Python programs. Not all of them are suitable for developing
a fully fledged dashboard but depending on the experience level of the
programmer and the purpose of programming, one or the other might be
beneficial. Section 3.2.1 illustrates what we call the interactive mode by
directly working in a powershell or terminal, only offering a limited, but
working, environment. In Section 3.2.2, we discuss an interpreter-like mode,
focusing on Jupyter Notebook, an environment that is already quite flexible
to implement Python programs but that only allows smaller pieces of code.
We mention it in its own section in the book since we consider it as one
of the most popular environments for data scientists. Jupyter Notebook is
also considered an IDE, but we think it has less options than other IDEs like
PyCharm or Spyder for example. In Section 3.2.3, we talk about many more
integrated development environments (IDEs) [135] that are powerful tools
for implementing Python code, even larger programs consisting of various
files and functions which might not be that handy in Jupyter Notebook. Also,

https://www.docs.anaconda.com
https://www.docs.anaconda.com
https://www.docs.anaconda.com

3.2 Installations and Options 83

GitHub (Section 3.2.4) can be of great help, in cases, some programmers
work together on the same problem, in a so-called collaborative manner.

3.2.1 Interactive mode

It is possible to create runnable Python programs without the installation
of advanced integrated development environments, just by using a terminal
or a powershell (see Figure 3.4). Typing in source code line by line and
finally let run this code will yield a result, in cases, the code is syntactically
correct. Modifying this piece of code is a daunting task, in particular, if the
code gets longer and longer with more and more functionality, even spread
over several classes in object-oriented programming [176]. Moreover, it is
impossible to easily store the implemented code, for example, in a text file
to further develop it later on or to send it to someone else, for example, to
share it with others in a collaborative source code development like it is done
in larger software projects [11]. The terminal is something like a command-
line interface but to accelerate our everyday programming work, we wish
to have something that comes close to a graphical user interface [226] for
solving typical programming tasks, focusing on mental map preservation and
a reduction of cognitive efforts, aspects that are hard to take into account
in command-line interfaces. Although a command-line powershell interface
allows to write and run code in an interactive mode, that is, the code will
be evaluated immediately on-the-fly after pressing return, for example, just
like an interpreter does, all of the code will be lost each time we close or
exit the powershell. This is an unsatisfactory behavior. Storing the code in a
file and calling this file in a powershell is also possible, but that requires to
store the file each time and to evaluate it each time. A better option would
be to directly let the code evaluate while at the same time keeping the code
content in a data file, a strategy that is shown in a Jupyter Notebook mode
in Section 3.2.2.

Exercises

• Exercise 3.2.1.1: Open a powershell or terminal and implement Python
code to experiment with this option. Discuss the benefits and drawbacks
of this option.

• Exercise 3.2.1.2: Try to modify your code from Exercise 3.2.1.1 several
times. What is the obvious problem here?

84 Python, Dash, Plotly, and More

Figure 3.4 Programming in Python in a powershell is one way to create, compile, and run
programs. Unfortunately, it comes with a list of negative issues.

3.2.2 Jupyter Notebook mode

Jupyter Notebook [184], also being an integrated development environment
(IDE), can be used as a web-based tool for implementing and evaluating
Python programs in an interactive style (see Figure 3.5 for the same exam-
ple Python code as in Figure 3.4). Writing code in a Jupyter Notebook is
similar to creating documents, with the difference that the documents can be
interpreted and the result is given in cases the code is syntactically correct.
The user interface of a Jupyter Notebook consists of text field-like entries
containing Python code followed by results in form of textual, numerical, and
graphical outputs. One benefit compared to the traditional way of using the
interactive mode in a powershell comes from the fact that the code is storable,
typically in a file with a .ipynb file extension. Moreover, the code can be
modified, extended, while it can be re-interpreted, text field by text field, just
to keep all the variable values up-to-date. It is also possible to artificially
"decorate" Python code in a Jupyter Notebook by integrating HTML-like
texts, for example, for providing headlines to several code fragments. Since
such a notebook is running in a web browser, it can even be translated in other
document formats including HTML or pdf. However, a Jupyter Notebook is
still missing a lot of functionality and features that we would typically expect
from classical modern integrated development environments like PyCharm or
Spyder.

3.2 Installations and Options 85

Figure 3.5 The same code as in Figure 3.4 is illustrated here in a Jupyter Notebook.

Exercises

• Exercise 3.2.2.1: Start a Jupyter Notebook and extend the Python code
from above by changing the range of the for-loop to be between 5 and
25. Run the new code in the Jupyter Notebook.

• Exercise 3.2.2.2: Store the code in the Jupyter Notebook in a file and
find the file on your computer. Which file extension does it have?

3.2.3 Integrated development environment (IDE)

Figure 3.6 Several important aspects around source code and source code quality.

86 Python, Dash, Plotly, and More

An integrated development environment (IDE) can be regarded as soft-
ware that helps programmers to implement code, in particular, in larger
programs by providing various tools, that is, software like an interpreter or
compiler, a debugger, an editor with syntax highlighting and code formatting,
a variable tracker, a version control and the like, each of them focusing
on a certain functionality during software development [82]. Hence, they
provide more functionality in a so-called multiple coordinated view [200]
user interface than the interactive or Jupyter Notebook mode can offer. There
are various IDEs, but actually software developers are mostly focusing on a
specific one and hardly change this one during their lives, unless there is a
really good reason to do that [110]. In Python, there is a list of such IDEs
consisting of an editor and functionality to create and debug code. The most
important and useful ones might be PyCharm, Spyder, Visual Studio Code,
Atom, Jupyter Notebook, LiClipse, Vim, GNU Emacs, Sublime Text, and
Thonny, to mention a few. Most of them can be used in the popular operating
systems, hence they work in Windows, Linux, and MacOS. Some of them
have more, some others less functionality, but all of them can be regarded as
integrated development environments to some degree, also Jupyter Notebook,
although we have described it already in Section 3.2.2 separately. Working
with an editor like Emacs or Notepad can also be an option, but most of
the Python-based debugging functions would be missing, functions that IDEs
typically offer. Jupyter Notebook is somehow located between an IDE and
an editor due to the many missing but important IDE functions. The more
experience a programmer gets, the more interesting such IDEs will get,
making programming more efficient. Important functions focusing on code
quality improvements might be listed as follows (see Figure 3.6): syntax
highlighting, syntax matching, bracket match checking, variable explorer,
error highlighting, indentation support, code completion, code clone detec-
tion, refactoring tools, profiler, file system and class browser, history log,
code sharing, GitHub integration, and many more.

Exercises

• Exercise 3.2.3.1: Install the integrated development environments men-
tioned above, experiment with them, and create a list with benefits and
drawbacks for each IDE. Which one is the preferred one, and why is it
suitable for developing dashboards?

3.2 Installations and Options 87

• Exercise 3.2.3.2: Implement a small Python program in each of the
IDEs and include a bug or a wrong indentation in the code on purpose.
Describe how the IDEs react on the bug and the indentation problem.

3.2.4 GitHub

Figure 3.7 Larger software systems are implemented by developers in a collaborative
process.

Software development is typically not an individual’s job, in an isolated
environment, but today’s software systems are quite large, consisting of many
files and classes, with a multitude of functions, too large that many developers
and coders (see Figure 3.7) are required to solve the problems at hand in a
collaborative manner [53]. GitHub is a good option to work together in larger
projects [167] while also a version control is integrated to let the developers
checkout the latest implementations to their workspace, to commit updates
to the repository, and to set back the code to an earlier state, in cases this is
needed. Also, further features apart from version control are useful during
software development such as bug tracking, error databases, or change logs.
The software projects in GitHub can be provided in an open source manner,
letting the community taking part to some extent. GitHub already reached
the sheer size of supporting nearly 100 million developers all around the
globe since its development started already in 2007. GitHub also includes

88 Python, Dash, Plotly, and More

primitive visualizations to visually explore the developer activity in some
kind of graph representation [82], but the visual support is definitely one of
the weaker points in this powerful tool. Since the dashboards we are designing
and implementing in this book are rather small software projects, we will not
make use of GitHub, we are just introducing GitHub as an option for many
developers, in cases dashboards with a multitude of functions and interactive
visualizations have to be developed by several developers.

Exercises

• Exercise 3.2.4.1: Create a new dashboard project by using GitHub.
• Exercise 3.2.4.2: Invite some collaborators to your project who will help

you with coding the dashboard.

3.3 Interplay between Dash, Plotly, and Python

Creating dashboards requires knowledge and experience in many subtopics,
at least involving Dash, Plotly, and some programming in Python. One of the
first steps is to get the data into the visualization tool, typically stored in one or
several data files or in a database. The data alone is, in most of the scenarios,
not usable in the given format or in the given order and structure, that is, it has
to be transformed into suitable data formats, understandable by the tool, and a
meaningful structure has to be computed to allow data patterns to be detected
by means of powerful interactive visualization techniques [178, 258]. For
the visualizations, there exist several graphics libraries (see Section 3.1.4),
but the user interface [217] is as important as the visualizations themselves.
The visualizations we are going to create in this book are mostly based on
Plotly and the user interface focuses on Dash with its Dash HTML and Dash
Core Components, visually improvable and adjustable by using the right CSS
commands. The actual dialogue between the users and the visualization tool
is built by so-called callbacks, standing for the interface between the user
input in the user interface and the visual, tabular, and textual outputs in the
user interface is given by visualization techniques, tables with textual and
numerical information, and textual information itself like labels or details-
on-demand and the like (see Figure 3.8 for an illustration of the ingredients
for creating a dashboard).

This section is organized in some kind of ordered structure with dash-
board implementation playing a key role, starting with the data in use that

3.3 Interplay between Dash, Plotly, and Python 89

Figure 3.8 The major ingredients for implementing a dashboard.

has to be read first since the data builds a certain core ingredient in each
data visualization tool (Section 3.3.1). Transforming the data is important
to bring it in the right data format but also in the right data structure to
derive data patterns (Section 3.3.2). In Section 3.3.3, we describe the Dash
core components, while in Section 3.3.4, we will look into the corresponding
HTML components that are required to layout and decorate the dashboard.
The cascading style sheets (CSS) to allow aesthetically and user-friendly
dashboards are discussed in detail in Section 3.3.5. Popular visualization
techniques are introduced in Section 3.3.6 with explanations about how Plotly
can be integrated into a dashboard code. Finally, we will talk about the very
crucial callback mechanism (Section 3.3.7) to create some kind of dialogue
between the users and the user interface with all of its components and
visualizations by allowing inputs/outputs in the user interface, modifying the

90 Python, Dash, Plotly, and More

Dash core components that can come in the form of menus, sliders, text fields,
and date pickers, but also in the typically visually more detailed diagrams,
charts, and plots that are also considered as Dash core components but those
are based on Plotly code in this book.

3.3.1 Reading and parsing in a dashboard

Data can come in a variety of forms (see Section 2.1.1), ranging from
simple data types like quantitative, ordinal, or categorical/nominal data to
more complex data types like relational/hierarchical, uni-, bi-, tri-, or mul-
tivariate/tabular, textual, or trajectorial data, also with a dynamic, that is,
time-varying nature [4]. Depending on the data types it might be stored on
different data files in various data formats. However, reading and parsing
the data by using Python code is necessary to get the data in a usable form
into the dashboard, that is, to allow graphical depictions of it. Reading data
can be done in a standard method by just reading a text or binary file in the
traditional way (see Section 4.8) or in cases the data exists in a tabular, Excel
table-like, form with rows and columns, it can be read by a so-called Pandas
DataFrame [169]. This is also possible for data that is updated regularly as
real-time data [228]. Even more, the data might be stored locally, on one’s
own computer, or remotely on a server, making a remote access via a URL
to a possible solution. No matter how the data exists and where it is stored,
we should be able to store the data in certain data structures and variables to
make it processable and accessible quickly and effortlessly, that is, efficiently
and effectively.

Table 3.2 Some rows and columns with attribute values serve as an example dataset for the
following code.

An example tabular data with several attributes
Name Gender Age Smoker Hobbies
Lucas Male 45 No Football, Tennis, Jogging
Emma Female 38 Yes Cooking, Swimming
Bob Male 52 Yes Baseball, Walking
Martha Female 32 No Hiking, TV
Roy Male 40 Yes Theater, TV

1 import pandas as pd
2

3 df = pd . read_csv (" hobbies . csv ")

Listing 3.6 Reading a csv file containing people with some personal attributes.

3.3 Interplay between Dash, Plotly, and Python 91

As we can see in Listing 3.6, reading tabular data (like the example tabular
data in Table 3.2) is not a big issue in Python, in case, this table is given in
a csv format, that is, in a comma-separated-values format (stored as a file
with name "hobbies.csv"). We can make use of a Pandas DataFrame to read
the data file in exactly that format in just one line of code. It may be noted
that the correct file path must be specified in order to get positive reading
results. However, in this form, the data is still sleeping in a DataFrame and
has to be transformed and visualized, but fortunately, doing the plain vanilla
transformations and visualizations is also not very difficult, as we will see
later (again).

Exercises

• Exercise 3.3.1.1: Create a new table with rows and columns similar to
the given data table from above and read it by using a Pandas DataFrame.

• Exercise 3.3.1.2: Read an arbitrary text file, for example, a page from
a book. Also, read a file that contains an image from one of your last
holidays. Is there a difference between reading text and image files?

3.3.2 Data transformation in a dashboard

Only reading and parsing the data into a specific format are actually crucial
but also boring operations, a data transformation finally helps to compute the
most important data patterns algorithmically. For example, preprocessing the
data to aggregate it or to interpolate between two numerical values to fill data
gaps are data transformations. Transforming data could mean everything we
apply to data that modifies it by restructuring it in some way [247]. Also
more complex operations might be imaginable like clustering [254] the data
or projecting [235] it to a lower dimension in case it is a multivariate or
high-dimensional dataset. Also, a matrix reordering [20] belongs to such data
transformations, meaning to permutate the rows and columns of a matrix,
like an adjacency matrix for networks [106], to compute some kind of struc-
ture and order among the network vertices based on their relations among
each other (see Tables 3.3 and 3.4 for a reordering strategy to derive some
meaningful group patterns among the matrix entries). There are various data
transformation strategies, typically being applied for solving one or several
tasks at hand to compute some structures in a dataset that would otherwise
not be visible, hence a visualization of such unstructured data would not be
meaningful to detect patterns and anomalies.

92 Python, Dash, Plotly, and More

Table 3.3 An unordered matrix of zeros and ones.
An unordered matrix of zeros and ones

A B C D E F G H
A 1 1 0 0 0 1 1 0
B 1 1 0 0 0 1 1 0
C 0 0 1 1 1 0 0 1
D 0 0 1 1 1 0 0 1
E 0 0 1 1 1 0 0 1
F 1 1 0 0 0 1 1 0
G 1 1 0 0 0 1 1 0
H 0 0 1 1 1 0 0 1

Table 3.4 An ordered matrix of zeros and ones, based on the matrix in Table 3.3.
An ordered matrix of zeros and ones

F B G A H D C E
F 1 1 1 1 0 0 0 0
B 1 1 1 1 0 0 0 0
G 1 1 1 1 0 0 0 0
A 1 1 1 1 0 0 0 0
H 0 0 0 0 1 1 1 1
D 0 0 0 0 1 1 1 1
C 0 0 0 0 1 1 1 1
E 0 0 0 0 1 1 1 1

As mentioned before, data transformation can mean anything related to
modifying the input data. The biggest challenge in this step is to implement it
in an efficient way (if this is possible) and even more, put the corresponding
Python code to the right place to avoid runtime issues. In some situations, the
data transformations can be precomputed, that is, computed before the users
of a visualization tool or dashboard explicitly request them. To reach this
goal, the precomputed structures are stored somewhere on a server or locally
(if space allows) to avoid computing the same values all the time again and
again to reduce the computation time when the tool is running. In some other
situations we cannot precompute the data since we do not know what the users
are asking for, and computing all possible outcomes is impossible due to the
immense amount of variations, depending on the parameter space and the
decisions of the users. Consequently, the rule of thumb would be to compute
anything that can be computed before and for all other computations, we have
to come up with the most efficient algorithm that we can find to avoid runtime
issues during the running program [36].

3.3 Interplay between Dash, Plotly, and Python 93

Exercises

• Exercise 3.3.2.1: If we had an Excel table full of numerical values what
would be meaningful data transformations that we can apply, from the
perspective of the rows and the columns?

• Exercise 3.3.2.2: Aggregating a list of numerical values, for example,
the temperature at a place every minute, into an hourly form reduces the
amount of data. Which ways can you find to compute aggregated values
in a time interval?

3.3.3 Dash core components

The dash core components can be imported by the code line in Listing 3.7
and have the purpose of allowing users to modify data, hence serving as input
options. Furthermore, the dash core components can even show results of a
user interaction [258], that is, serving as output options as well. Classical
ways for making inputs are by using menus, sliders, date pickers, text fields,
and many more provided by the dash core components (see Figure 3.9 for a
slider and a drop-down menu). Creating a range slider between the range 0
and 10 with the selected interval [2, 6] instead of a standard slider is shown
in the code in Listing 3.8. It may be noted that all of the components can be
visually decorated in some way, for example, a range slider can become more
aesthetically appealing [5] and user-friendly if a scale with labels is added
to it [232]. Ways to create outputs are diagrams, tables, or just textual infor-
mation. The diagrams and tables can be created by means of Plotly Express
(see Sections 3.1.3 and 3.3.6). But also menus, sliders, date pickers, and so
on can produce outputs, for example in cases in which they change their
visual appearance based on user interactions. On the other hand, diagrams
and tables might also be options for making user inputs, for example, clicking
on a visual element in a diagram or selecting a table entry, will generate
information on which a user interface or a visual component can react.
Dash core components could also be classified in, user interface components
and visualization components, instead of an input/output classification. User
interface components are the ones with respect to the functionality of the
interface while the visualization components are those that focus on the visual
output, focusing on visual data explorations by means of diagrams, charts,
and plots.

1 from dash import dcc

Listing 3.7 Importing the Dash core components.

94 Python, Dash, Plotly, and More

1 from dash import dcc
2

3 dcc . RangeSl ider (
4 min=0,
5 max=10,
6 value = [2 , 6]
7)

Listing 3.8 Creating a range slider as a Dash core component.

(a)

(b)
Figure 3.9 A slider (a) and a drop-down menu (b) created as Dash core components.

Exercises

• Exercise 3.3.3.1: Implement a drop-down menu as a dash core compo-
nent that has five labels for cities in the world while the second and
fourth city are already preselected by default.

• Exercise 3.3.3.2: Implement a slider with a range from zero to 100 while
the value 20 is preselected.

3.3.4 Dash HTML components

HTML stands for the HyperText Markup Language which is a way to model,
arrange, design, and display content that is shown in a web browser [90, 259].
HTML is quite simple with only a limited number of possible document
features such as headlines of different (but fixed) font sizes, headings, para-
graphs, line breaks, horizontal lines, lists, links, or tables, to mention a few.
All of those features are indicated by so-called tags, while each feature has
its own tag. Moreover, some HTML features can be nested into each other,
just like a hierarchical structure [215]. Such a hierarchy is important for
a dashboard design since each dashboard consists of the main web page,
in which subpages or subregions are located and even more fine-granular
substructures depending on the dashboard designer. HTML is guiding this
structuring process; the components themselves are typically augmented by

3.3 Interplay between Dash, Plotly, and Python 95

additional Dash core components. The cascading style sheets (CSS) (see
Section 3.3.5), on the other hand, and further languages like JavaScript can be
used to enhance the visual appearance of such browser content by allowing to
adapt border sizes, paddings, and margins for example as well as colors and
many more visual features. HTML is actually responsible for the interface
appearance, that is, since a dashboard can be regarded as some kind of web
page (or several of them in a linked manner), the HTML components and their
layouts, sizes, and additional features model the structure of a dashboard.
Consequently, we need a way to model a dashboard as some kind of HTML
structure which is supported by the so-called Dash HTML components which
have to be imported first to work with them as with the Dash core components
(see Listing 3.9 for the import that is required in this case).

1 from dash import html
Listing 3.9 Importing the Dash HTML components.

1 from dash import html
2

3 html . Div ([
4 html .H1("My f i r s t Dash HTML component")
5])

Listing 3.10 An example for an HTML headline with Dash HTML components.

Listing 3.10 shows an HTML headline as a Python implementation as a
Dash HTML component. In Listing 3.11 we can see the same piece of code
given in pure HTML with opening and closing tags.

1 <div>
2 <h1>My f i r s t Dash HTML component</h1>
3 </div>

Listing 3.11 HTML code for the Dash HTML component in Listing 3.10.

Exercises

• Exercise 3.3.4.1: Use the Dash HTML components to implement three
different headlines of sizes H1, H3, and H5 placed below each other and
stating what their size is.

• Exercise 3.3.4.2: Include a headline of size H1 and below that a drop-
down menu by combining the corresponding Dash HTML and Dash core
components.

96 Python, Dash, Plotly, and More

3.3.5 Cascading style sheets (CSS)

Apart from pure HTML, there are further ways to visually enhance or
decorate a dashboard which can be achieved by using the cascading style
sheets (CSS), for example. This is a so-called style sheet language and can
be applied on several levels like inline, internal, or external CSS, depend-
ing on what granularity the visual enhancement is made. CSS can affect
the appearance of many elements in a dashboard ranging from formatting
specifications to more complex layouts as well as simpler effects focusing
on background images, visual variables [170] like colors, font sizes, shapes,
or Gestalt laws [147] like visual components, element distances, similarities,
and many more. CSS can even be used to allow dashboards to be shown on
several output displays like small-, medium-, or large-scale displays [210]
(smartphones, laptops, and powerwalls) and even more, it can also be used
to adapt based on certain other modalities like speech or braille [68] for
supporting blind people when reading content, a powerful concept that should
definitely also be used for dashboards.

The general case for using CSS is by external .css files. However, internal
or inline CSS are typically also used in smaller projects with a small number
of code lines. Inline CSS is more flexible since it allows to put a CSS
command to the right places in the HTML document, but negatively it creates
a lot of extra text input, which could be mitigated when using external CSS.
In case one property has to be changed for all components of a certain type,
one has to find all places in the code and change this inline CSS, for external
CSS, we only have to adapt one tag. The good thing here is that external
CSS commands are overwritten by internal commands, which are overwritten
by inline commands, hence the cascading effect, from external to internal to
inline. As an example we could look into an inline CSS command that is
responsible for setting the text color of an H1 HTML element to a certain
color, in this special case the color blue (see Listing 3.12).

1 <h1 s t y l e=" co l o r : b lue ; ">A t ex t in blue</h1>

Listing 3.12 An example of using CSS to set a font color of an H1 headline in HTML to
blue.

In a dashboard code in Python, the CSS command could be integrated like
the example given in Listing 3.13 in Line 6. We see that there is some kind
of syntactic difference between pure HTML and the Python code for creating
dashboards.

3.3 Interplay between Dash, Plotly, and Python 97

1 from dash import Dash , dcc , html
2

3 app = Dash (__name__)
4

5 app . l ayout = html . Div ([
6 html .H1("A t ex t in blue " , s t y l e = { ’ c o l o r ’ : ’ b lue ’ })
7])
8

9 i f __name__ == ’__main__ ’ :
10 app . run_server (debug=False)

Listing 3.13 Integrating a CSS command into the code for a dashboard.

Exercises

• Exercise 3.3.5.1: Create a headline in HTML in size H3 with a green
text color. Use inline, internal, and external CSS commands.

• Exercise 3.3.5.2: What are the benefits of using external CSS? What are
the drawbacks?

3.3.6 Plotly in a dashboard

Diagrams, charts, plots, that is, visualizations also equipped with interac-
tion techniques can be integrated into a dashboard by using Plotly Express
(Section 3.1.3). A multitude of diagrams can be created focusing on showing
patterns in data, in a dashboard implementation they can just be included by
treating them as regular Dash core components (see Line 11 in Listing 3.14
for an example of a scatterplot in Plotly Express integrated into dashboard
code). This fact makes them displayable just like any other component
in the layout of a dashboard, while also CSS commands can be used to
manipulate, to layout, to style, to visually augment, or to decorate them, even
more they can be given a distance, margin, or padding with respect to other
components in the dashboard, to make them aesthetically appealing and user-
friendly [217]. Mostly, the diagrams serve as output components, showing the
results of applying an algorithm [62] or just visually representing a dataset,
while the integrated interaction techniques [258] can be useful to even regard
them as input components, for example to manipulate other components
based on the interactive requests or modifications users made to a Plotly
diagram. This feature is a bit more complex to implement than the standard
plain vanilla form of just showing the data visually while manipulating
parameters in a drop-down menu or by moving a slider for example, however,

98 Python, Dash, Plotly, and More

lots of fancy visual and interactive enhancements are possible as we will
illustrate in Chapter 5 with some runnable dashboard examples, ranging from
simple ones to those equipped with many more features.

1 from dash import Dash , html , dcc
2

3 app = Dash (__name__)
4

5 app . l ayout = html . Div ([
6 dcc . Graph (id=’ p lo t1 ’ , f i g u r e = {})
7])
8

9 de f update_graph () :
10 # Plo t l y Express , df = DataFrame
11 f i g = px . s c a t t e r (df , x=’ a t t r i bu t e 1 ’ , y=’ a t t r i bu t e 2 ’)
12

13 re turn f i g
14

15 i f __name__ == ’__main__ ’ :
16 app . run_server (debug=False)

Listing 3.14 Integrating a Plotly Express diagram into the code for a dashboard.

Exercises

• Exercise 3.3.6.1: Read a tabular dataset, for example, by using a Pandas
DataFrame and include a Plotly diagram in the form of a scatterplot that
shows the correlation behavior of two attributes from the tabular dataset.

• Exercise 3.3.6.2: Add another Plotly diagram in the form of a histogram
below the scatterplot that shows the distribution of one attribute, that is,
we should see two Plotly diagrams at the same time now.

3.3.7 Callbacks

Callbacks describe some kind of linking between the inputs and outputs, that
is, each time an input or several of them are changed by the users the cor-
responding outputs will be updated. This can be the value of a slider (which
is a Dash core component) that is updated, and hence, as a consequence,
one or several Plotly diagrams (which are also Dash core components) have
to be updated as well. By the callback mechanism, we create some kind of
interaction possibility, that is, a dialogue between users and the dashboard
or visualization tool. Without a callback, we would not have a chance to

3.3 Interplay between Dash, Plotly, and Python 99

modify the visual appearance of a dashboard on users’ requests, that is, it
would remain a static picture which is not the effect that we are planning
to have. The number of inputs and outputs is actually not limited, but if too
many inputs are allowed this might cause confusion effects on the user side. In
some cases, it is better to reduce the ways to modify parameters, to achieve a
user-friendly [230] and nonoverloaded visualization tool. Moreover, the more
modifications are allowed, causing changes to various outputs, the more com-
plex the corresponding Python code will get, but still, Dash and its callback
mechanism help to reduce the amount of programming work to get ready
for even more complex dashboards with a lot of interactive features. Even
multiple callbacks are possible, but we will move the explanation of them to
Chapter 5, in which we show simple and complex dashboards together with
their implementation details. However, before starting to create callbacks, we
should import the required concepts (see Listing 3.15). A callback mechanism
is illustrated in the code example in Listing 3.16.

1 from dash import Input , Output

Listing 3.15 Importing the Dash dependencies to allow a smooth callback mechanism

1 import pandas as pd
2 import p l o t l y . expre s s as px
3

4 from dash import Dash , Input , Output , dcc , html
5

6 app = Dash (__name__)
7

8 df = pd . read_csv ("K:\\ Desktop\\Data\\ quakes . csv ")
9

10 app . l ayout = html . Div ([
11 html .H1("Quakes" , s t y l e = { ’ text - a l i g n ’ : ’ c en t e r ’ }) ,
12 html .H4("Many Facts " , s t y l e = { ’ text - a l i g n ’ : ’ l e f t ’ }) ,
13

14 dcc . Dropdown(
15 id=’ l o c a t i o n ’ ,
16 opt ions = [{ " l a b e l " : "Asia " , " value " : ’AS ’ } ,
17 {" l a b e l " : " Aus t ra l i a " , " value " : ’AU’ } ,
18 {" l a b e l " : "Europe" , " value " : ’EU ’ }] ,
19 mult i = False ,
20 value=’ Asia ’ ,
21 s t y l e = {"width" : "40%"}
22) ,
23

24 dcc . Graph (id=’ p lo t1 ’ , f i g u r e = {}) ,

25

26 dcc . Graph (id=’ p lo t2 ’ , f i g u r e = {})
27])
28

29 @app . ca l l b a ck (
30 [Output (
31 component_id=’ p lo t1 ’ ,
32 component_property=’ f i g u r e ’
33) ,
34 Output (
35 component_id=’ p lo t2 ’ ,
36 component_property=’ f i g u r e ’
37)
38] ,
39 [Input (
40 component_id=’ l o c a t i o n ’ ,
41 component_property=’ value ’
42)
43]
44)
45

46 de f update_graph (opt ion_s lc td) :
47 d f f = df . copy ()
48 d f f = d f f [d f f [" l o c a t i o n "] == opt ion_s lc td]
49

50 f i g = px . s c a t t e r (
51 df f ,
52 x=’ magnitude ’ ,
53 y=’ depth ’ ,
54 c o l o r = "depth"
55)
56

57 f i g 2 = px . s c a t t e r (
58 df f ,
59 x=" l a t i t u d e " ,
60 y=" long i tude " ,
61 c o l o r = "magnitude" ,
62 s i z e = "depth"
63)
64

65 re turn f i g , f i g 2
66

67 i f __name__ == ’__main__ ’ :
68 app . run_server (debug=False)

Listing 3.16 Python code showing the mechanism of callbacks

100 Python, Dash, Plotly, and More

html . Br () ,

3.4 Deploying 101

Exercises

• Exercise 3.3.7.1: Implement a simple dashboard with one range slider
whose values are used to update a corresponding scatterplot, that is, the
range slider is used here as a numerical interval filter. What are the inputs
and outputs of the callback function?

• Exercise 3.3.7.2: Implement another dashboard with two range sliders
allowing to filter two numerical attributes while the effect of the filters
is interactively shown in a scatterplot.

3.4 Deploying

Another important stage during the development of a dashboard is the deploy-
ment of it to make it available for everybody who has a web browser and
internet access. Technically, this is easily possible but it brings various other
challenges into play, also taking into account the visual and interface design.
In case a dashboard is accessible from any place in the world, the users
have a multitude of properties ranging from language differences, cultural
habits, signage, symbols, reading directions, and many more [93], typically
including the visual variables like colors, shapes, icons, all of them having
different meanings depending on the users. Hence, deploying does not only
mean to put the dashboard online, but it has to be done in a way that it is
focusing on the users’ experiences and environments. Making a visualization
tool available for anybody on earth can be a difficult task if it is to fulfill
all of the users’ needs and requirements. Consequently, it is a good advice
to consider the possible users already in the design phase to not run into
problems after the tool is finally deployed. Also, the application domain can
require differences in the tool’s setup, for example for analyzing car traffic
data it makes a difference if the traffic runs on the right or left street side. In
the medical sector, there might be different diseases and viruses that require
different analysis and visualization techniques, creating a dashboard for any
kind of application scenario is not possible. Moreover, domain experts [257]
have to be recruited to create a dashboard for specific scenarios, a fact that
can come up with high costs.

In this section, we take a look at possibilities to deploy a dashboard,
that is, to make it publicly available online in a web browser. Section 3.4.1
describes one popular way to do that by making use of Heroku. The chal-
lenging issue apart from the technical problems are the users themselves
who are now international ones instead of national or local users with

102 Python, Dash, Plotly, and More

different cultures and symbol or signage understanding and interpretation
(Section 3.4.2). One good aspect of online dashboards comes from the fact
that we can access users with a multitude of backgrounds, helping to evaluate
the dashboard and its algorithmic, visual, and interface components (Sec-
tion 3.4.3). Finally, we will give a brief overview of drawbacks and benefits
when creating an online dashboard that is accessible by everybody in the
world (Section 3.4.4).

3.4.1 Heroku

Actually, we do not need to deploy a dashboard, that is, a Dash app. It
typically runs locally, on our own machine, on so-called localhost. The
URL for accessing the localhost is given after the compilation phase of the
dashboard’s Python code is finished. Typing in this URL in a web browser
or clicking on it will successfully show the created dashboard with all of its
functionality. However, to go one step further, it is of special interest to deploy
the Dash app to a certain kind of server, to share it with our worldwide users,
even by hiding it behind a login and a password. There are various ways to
share a dashboard on a server, but one specific way to do that is by making use
of a Heroku server [81]. This kind of server platform provides an easy way
to deploy so-called Flask-based applications, as we have talked about already
in Section 3.1.2. For more detailed instructions, we recommend to read the
tutorial at https://dash.plotly.com/deployment. Actually, in summary, we only
need four steps to get it running, which are in a condensed form:

1. The creation of a project folder for the dashboard
2. The initialization of this project folder
3. The initialization of the project folder with an example application
4. The initialization of Heroku

In cases, we modify and extend the dashboard code, we have to proceed
with a fifth step that has to be repeated each time a modification or extension
is made, which is the redeployment.

Exercises

• Exercise 3.4.1.1: Create a dashboard that reads a small tabular dataset
(an Excel table) with numerical values for the attributes. The dashboard
should show a scatterplot for two columns of the tabular dataset, and
there should be an option to filter values. Deploy this simple dashboard
to Heroku.

https://www.dash.plotly.com

3.4 Deploying 103

• Exercise 3.4.1.2: Let your dashboard run in different web browsers like
Google Chrome, Mozilla Firefox, Opera, or Microsoft Edge and try to
spot the differences.

3.4.2 International users

Deploying a dashboard means to make it accessible online, for everybody
who has access to the internet and who has a web browser in which the
dashboard is running properly. But such international users [241] bring into
play a few new challenges that we are not confronted with when only working
locally on our own computer. Not only challenges have to be tackled, and
we can also see the international users as a great opportunity, for example,
to evaluate a dashboard from a multitude of user perspectives, people with
different backgrounds, knowledge, and experience.

On the challenging side, we see that our international users speak dif-
ferent languages, hence the best option is to keep the dashboard design in
English [193] and/or allow to switch to another language-on-demand. The
problem here is that we cannot easily support all possible languages and
dialects in the world, technically, it is possible, but strategically, we would not
suggest such a solution. Another problem comes from the reading direction,
which is top-to-bottom and left-to-right in Western-civilized countries but
which is not the case in Asian or Arabic countries. Actually, this is a challenge
for the dashboard design that typically follows some kind of layout focusing
on an exploration strategy. For example, the input parameters are placed on
the left-hand side and we might fill in a form from top-to-bottom and from
left-to-right. But how would Japanese people fill in the corresponding param-
eter values? They might be confused in the beginning. The only solution in
such a scenario would be to request the desired layout from each user and
setup the dashboard in a good layout or to link it to the language. It is also
not only about the reading direction and the layout focusing on the interface
design, and it is also about the visual design that is composed of many
visual variables including color, shapes, positions, sizes, and so on. Color is a
good example [245, 246] that has to be treated with care for international
users. Colors can have different meanings, depending on cultural aspects,
for example. Also, the signage, symbols, or icons go in the same direction
and have to be adapted, depending on the fact which kind of users we are
confronted with.

Positively, we must say that international users bring into play new
beneficial aspects as well. The more users a dashboard has the more popular

104 Python, Dash, Plotly, and More

the dashboard is, and this honor falls back to the designers and implementors
of the dashboard. We can record valuable feedback by asking the users in
some kind of crowdsourcing user experiment [2] which features they liked
and which ones not or what they consider improvable. This feedback can be
collected in a textual form by letting them type in text in a feedback form in
the dashboard or by showing some kind of Likert scale [221] ranging from
very good (5) to very bad (1) in the dashboard to, get numerical instead of
qualitative feedback. Numerical values are easier to evaluate than textual
feedback, but they are also some kind of aggregated measure. Moreover,
the mouse cursor can be tracked and stored over space and time as well as
mouse clicks. This gives a more detailed impression of the user behavior;
however, the mouse movements alone do not give us any feedback on the
cognitive processes that the users are confronted with. The biggest issue
here, no matter which kind of data is recorded from the international users,
comes from the fact that the data itself is not reliable since it is acquired in
some kind of uncontrolled user study in which we cannot control the users
and in which we do not know much about the users, apart from their IP
addresses. We might ask about personal details, but we can never be sure
if those details are true. The recorded data itself is also a problem. It is quite
hard to analyze the data for patterns, correlations, and anomalies, actually
we are interested in the user behavior when they are given a certain task,
that is, we want to detect design flaws in our dashboard based on the user
behavior.

Exercises

• Exercise 3.4.2.1: Imagine your dashboard has to be created for an
international market with users from Europe, Asia, and South America.
Discuss important visual design and interface design features that have
to be taken into account to make it usable for all those users.

• Exercise 3.4.2.2: If we integrate user data into the design of our
dashboard, which kind of user data should be considered, and how
trustworthy and reliable is such user data (since we do not know who
the real users are)?

3.4 Deploying 105

3.4.3 Online user evaluation

A user evaluation in an online setting can be beneficial if we are interested
in many study participants, that is, in some kind of crowdsourcing exper-
iment [2]. The big challenge, in this case, is the fact that the experiment
happens in an uncontrolled way, meaning the recorded data might not be
reliable enough to get statistically significant results. However, the recorded
data might be usable as some kind of pilot study to indicate some kind of trend
in the user behavior. This trend can be used as an inspiration for hypotheses
and research questions that can be evaluated in follow-up experiments, maybe
in a controlled user study setting, for example, in a laboratory. Consequently,
recording user-related data in an online study is a good idea, but the data has
to be treated with care, to not lead to drawing wrong conclusions. Another
problem with the online study is that there is no concrete user task to be
solved, actually the users just play around with the provided dashboard but
they are not guided in a specific direction. One might say we could limit the
functionality of the dashboard, but, on the other hand, we also wish to show
the dashboard in its entirety with all integrated functions, features, and visual
components.

The controlled studies typically limit the number of study participants
since the control requires more preparation time and an experimenter who is
present in the lab all the time to control whether the study participant is doing
the right things. Also eye tracking [44, 87, 123] comes into play here, helping
to record the eye movements of the study participants to analyze their visual
attention behavior. Eye tracking could also be applied in an online web-based
scenario, however, this brings us back to the uncontrolled study setting. Even
more, although a lot of data about user behavior, visually, verbally, or based
on performance measures is collected, we need further approaches from
the fields of statistics, data science, and/or visual analytics to find patterns,
correlations, or anomalies in the textual, numerical, or spatiotemporal data
which is another tedious task and opens new perspectives for completely new
research fields.

Exercises

• Exercise 3.4.3.1: Create a simple dashboard, deploy it, and include a
text field for recording qualitative feedback of online users. How do you
advertise your dashboard to get enough study participants?

106 Python, Dash, Plotly, and More

• Exercise 3.4.3.2: Add a feature to the dashboard to track the movements
of the mouse cursor as well as mouse clicks. Can you find some patterns
in the recorded user behavior data?

3.4.4 Benefits and drawbacks of online dashboards

When summing up the facts about deploying a dashboard, that is, making it
accessible to everybody on earth, we can identify several important positive
and negative points. Some major benefits could be listed as follows:

• Popularity: Having access to a dashboard on the web increases its
possible success since many more people can use it. However, we need
to advertise it to give people the chance to use and test it, and maybe
finally pay for the services provided by it.

• Number of users: An online version of a dashboard can increase the
number of people using it. Hence, the large number of users can serve
as some kind of stress test of the dashboard for all, the visual, the
interactive, as well as the algorithmic components.

• User behavior: Many users means having the chance of collecting and
recording data that describes the user behavior. This can come in the
form of qualitative textual feedback or in the form of mouse movements
and mouse clicks. Evaluating and analyzing this data can give insights
in design flaws that are worth improving.

• Application domains: Today, there is a multitude of application
domains that have to tackle data science and data visualization problems.
Consequently, creating an online dashboard can be a great success if it
can handle data from several application domains.

Although there are many positive aspects of deploying a dashboard, we
can also find several drawbacks that we come across during the design and
implementation phases:

• Technical issues: Deploying means integrating more visual and inter-
face features to make a dashboard usable for everybody. Moreover, we
need to "install" it on a server which requires some knowledge about this
additional functionality.

• User requirements: Making a dashboard accessible to everybody
brings new challenges into play since people have different needs and
requirements depending on the fact about where they live or where they
have grown up, focusing on cultural issues.

3.4 Deploying 107

• Ethics and privacy: We might draw wrong conclusions from our own
data just by using a dashboard designed and implemented by someone
else. This might be due to a missing experience to work with a dash-
board. Moreover, new questions arise asking about if it is allowed to use
the data uploaded by others.

• Environments: Deploying a dashboard has to take into account different
displays like small-, medium-, or large-scale ones. Also, the operating
systems of the users can have an impact on the functionality as well as
the different web browsers, also in different versions.

Exercises

• Exercise 3.4.4.1: Describe the benefits that you would have when
deploying a dashboard.

• Exercise 3.4.4.2: Are the drawbacks when deploying a dashboard also
depending on the application domain, that is, are there, for example,
differences between geographic, medical, or educational applications?

https://taylorandfrancis.com

4
Coding in Python

Writing programs in the programming language Python [236] is not that
difficult as you might expect. Even if you are not an experienced program-
mer, there is still support to learn the most important Python constructs
to finally implement the dashboard that you designed for visually explor-
ing your or other people’s data [255]. In this chapter we are trying to
give a step-by-step tutorial on how to create Python programs, starting
with simple instructions and more and more walking into the directions of
much more complex programs including both functional and object-oriented
programming paradigms. Since writing about Python programming can fill
several books, we will only focus on the most relevant Python constructs
to implement dashboards with some but not all possible functionalities. For
the interested reader we suggest to read a more Python-specific book that
provides many more insights into Python code constructs that are not used
on an everyday basis, for example, to build dashboards for visually and
algorithmically exploring data, or to analyze data based on machine learning
and further data science concepts [28].

In the first few sections, we more or less use Python as some kind of
calculator to mathematically evaluate arithmetic expressions, even Boolean
expressions consisting of Boolean and relational operators as well as further
arithmetic expressions. Those expressions build some kind of basic structure
when writing computer programs since they describe how to put information
together, how to aggregate and evaluate that to guide the control flow of a
program. Unfortunately, programming is not as easy as writing expressions
but more complex constructs are required like loops or conditionals, as well as
data structures with one-dimensional lists being the basic ones from a longer
list of possibilities including dictionaries, for example. For each subsection,
we will provide some exercises that are worth solving by either using Jupyter
Notebook for the simple ones or later, for the more complex ones, using
an IDE like PyCharm or Spyder for example. This chapter can also be

109

110 Coding in Python

studied as an introduction into Python programming without drifting away
into dashboard design and implementation, however, we have written it as a
tool to understand, develop, and extend dashboard code, focusing on solving
certain user-defined data exploration tasks.

We start the chapter with expressions (Section 4.1) that are impor-
tant ingredients to evaluate complex combined mathematical, relational, or
Boolean problems, even supporting bitwise operations. In Section 4.2, we
describe the most common basic and composite data types and explain the
concept of variables, constants, and conversions. In Section 4.3, we have a
look into strings and characters as well as into typical functions and methods
to allow meaningful operations on them. To allow branching in the control
flow, we describe the use of conditionals as well as exceptions that must be
handled sometimes (Section 4.4). A certain number of similar executions with
varying values can be modeled by loops that can occur as definite or indefinite
ones (Section 4.5). To encapsulate functionality like subroutines that are used
at several locations in the code, we introduce the concept of functions in
Section 4.6. A mighty concept in programming is recursion that can be used
in its standard form as well as tail recursion. Also, high-order functions and
lambda expressions serving as anonymous functions are worth discussing
(Section 4.7). To allow a communication with the users and to support them at
tasks like data reading and writing, we explain the most important operations
to work with data files (Section 4.8). Apart from functional or procedural
programming paradigms, we can also create classes and objects, which is
typically falling into the object-oriented programming paradigm which is
discussed in Section 4.9. Again, we do not focus on completeness in this
chapter, and we only want to describe the most important ingredients to get
started in Python programming.

4.1 Expressions

Evaluating mathematical constructs composed of arithmetic expressions by
adding, subtracting, multiplying, or dividing is one of the major ingredients
in nearly any computer program. Such expressions can get quite long with
a multitude of operators connecting the individual parts. It is important to
understand in which order such expressions are computed, for example,
prioritizing some expressions by using parentheses. Understanding the laws
of execution and evaluation is an important ingredient to avoid errors that
might be hard to locate later on in a computer program. Each operator has
some kind of precedence in Python, and in any other programming language,

4.1 Expressions 111

that decides which parts of a composite expression will be computed in which
order. An expression can include a multitude of operators and operands,
reducing to a certain value after its evaluation. Such values can be numerical
or Boolean values, depending on the operators. All operators are given a
well-defined precedence. In a composite expression, the operators of highest
precedence are evaluated first. After those results have been computed, the
operators of the next highest precedence are evaluated. This procedure goes
on until the complete expression is evaluated to either a numerical or a
Boolean value. In case operators have an equal precedence they are performed
in a so-called left-to-right order, as in many other programming languages
as well.

In this section, we have a deeper look into arithmetic, relational,
Boolean/logical, but even in bitwise as well as mixed expressions. Arithmetic
expressions (see Section 4.1.1) are typically built on arithmetic operators like
addition, subtraction, multiplication, division, or exponentiation operators.
Relational expressions are based on comparison operators like smaller, larger,
equal, not equal, and the like while they evaluate a Boolean value (see
Section 4.1.2). Boolean or logical expressions use logical operators like and,
or, not, and many more combined complex ones (which can be built by using
the basic ones) to evaluate to a Boolean value (see Section 4.1.3). We also
describe bitwise expressions that, as the name suggests, work on bits as their
basic units (see Section 4.1.4). In many cases, the different expression types
can be combined to create even more complex expressions, also known as
mixed expressions (see Section 4.1.5).

4.1.1 Arithmetic expressions

Expressions can come in various forms, typically built on certain types of
operators and operands. The operators can be understood as some kind of
connecting symbols describing how the individual expression parts should
be combined. The operands, on the other hand, are the basic values on
which the operators make computations. The operators hence describe how
to combine and the operands what to combine. Arithmetic expressions [97]
are based on so-called arithmetic operators which exist in various forms in
mathematical expressions like addition, subtraction, multiplication, division,
or exponentiation (see Table 4.1). In the Python programming language, those
are expressed by special symbols like +, -, *, /, and **. Moreover, we can
distinguish between binary operators, that is, those that take two arguments
and combine them into one, and unary operators, that is, those that just work

� �

Operator Example Explanation Math formula
+ x + y Add x and y (addition) x + y
- x - y Subtract y from x (subtraction) x − y
* x * y Multiply x and y (multiplication) x · y
/ x/y Divide x by y (division, type float) x

y

// x//y Divide x by y (division, type int) x
y

** x ∗ ∗y x to the power of y (exponentiation) xy

% x%y Divide x by y (modulo division) x mod y
- −x Negative of x (unary) −x
+ +x Positive of x (unary) +x

112 Coding in Python

on one value and might change the sign of a value, for example, from a
positive into a negative one. The good thing with expressions in Python is that
they do not only work on raw values like integers and floating point numbers,
but also on variables or even function calls that create a certain value as a
result.

Table 4.1 A list of arithmetic operators, some examples, their meanings, and mathematical
notations.

As already shown in Table 4.1, we can start building arithmetic expres-
sions by simply using the rules of arithmetic and then step-by-step connect
more and more of such subexpressions to more complex ones. An example
of a more complex arithmetic expression is given in Listing 4.1. Here, we
also see the idea of evaluation precedence or priorities. The addition paren-
theses have the highest priority and express that the expressions contained
inside the parentheses should be evaluated first. Then the multiplication and
division operators have a higher priority than the additional and subtraction
operators. If operators have the same priority level, the expression is evalu-
ated from left-to-right. By the way, the arithmetic expression in Listing 4.1
evaluates to -42.

1 4*3+2 -5*(7+3) -2*3 # eva lua t e s to -42

Listing 4.1 An arithmetic expression

Exercises

• Exercise 4.1.1.1: Evaluate the following arithmetic expression:

1 (4+3*7 -(3+5) *6) /3-17%3

• Exercise 4.1.1.2: Evaluate the following arithmetic expression:

3 -12+4**(3 -1) *0.1 -15//(4+3) 1

�

4.1 Expressions 113

4.1.2 Relational expressions

Apart from arithmetic expressions, we wish to make comparisons between
values, typically by using operators like >, <, >=, <=, ==, or !=. Those
describe relations indicating if one value is greater, smaller, greater or equal,
smaller or equal, equal, or not equal to another value. The relational expres-
sions [69] evaluate to Boolean values, that is, True or False, depending on
the outcome of the comparison. If a value x is greater than a value y, the
comparison x > y evaluates to True, otherwise to False. Table 4.2 shows the
most popular relational operators.

Table 4.2 A list of relational operators, some examples, their meanings, and mathematical
notations.

Operator Example Explanation Math formula
> x > y x greater than y x > y
< x < y x smaller than y x < y
>= x >= y x greater or equal than y x ≥ y
<= x <= y x smaller or equal than y x y
== x == y x equal to y x = y
!= x != y x not equal to y x = y

Since relational expressions evaluate to Booleans they can be combined
by Boolean or logical operators (see Section 4.1.3). A more complex example
than the ones given in Table 4.2 can be seen in Listing 4.2 which evaluates to
False since both, the left and right side of the comparison operator < evaluate
to 17. Consequently, they have the same value, no value is smaller or larger
than the other. It may be noted that comparisons between integer values are
safe while comparisons between floating point numbers can be problematic
and error-prone, in particular, if we compare for equality of two floating point
numbers.

1 (7*3 -4) < (4**2)+1 # eva lua t e s to False

Listing 4.2 A relational expression

Although comparison operators are binary operators in the sense that they
are applied to two expressions, that is, the left and right side of the operator,
they can even be used in a sequence in the sense of a chained comparison.
This means we can write

1 w > x >= y > z

instead of

1 w > x and x >= y and y > z

114 Coding in Python

which is something like syntactic sugar, making the implementation of
the code faster. But it has an additional benefit. In the shorter relational
expression with the chained comparison, the intermediate expressions are
only evaluated once which is not the case in the longer relational expression
including the Boolean operator and.

Exercises

• Exercise 4.1.2.1: Evaluate the following arithmetic-relational expres-
sion:

1 (4 -12) /8+1 > (9**0)

• Exercise 4.1.2.2: Evaluate the following arithmetic-relational expres-
sion:

1 (27//14) - 1 != 27 -(3*(4+5))

4.1.3 Boolean or logical expressions

Boolean or logical expressions [66] are based on operators like "and", "or",
and "not." The components of Boolean expressions are Boolean expressions
themselves, but the individual components can occur as arithmetic or rela-
tional expressions. When a Boolean expression is completely evaluated its
result will either be True or False. Those can be regarded as "Yes" or "No,"
speaking in computer science words also "1" and "0." Tables 4.3–4.5 illustrate
simple Boolean expressions with the operators "and", "or", and "not" and the
operands themselves being of Boolean values True or False. It may be noted
that the first ones are binary operators and the third one is a unary operator.

Table 4.3 The Boolean operator and.
and True False

True True False
False False False

Table 4.4 The Boolean operator or.
or True False

True True True
False True False

4.1 Expressions 115

Table 4.5 The Boolean operator not.
x Not x

True False
False True

An example of a more complex Boolean expression is given in List-
ing 4.3. The Boolean expression evaluates to False. It may be noted that
the expression is composed of arithmetic and relational smaller expressions
that build the entire expression. However, the result after the evaluation of a
Boolean expression is always a Boolean value, either True or False, saying
if a claim is true or not true, no matter what the smaller expressions evaluate
to. The number of operators connecting expressions to Boolean expressions
is unlimited, making such expressions to so-called compound expressions
consisting of many components. Listing 4.3 shows such an example.

1 (4+3*(6+1)<13) and (4 -3*2**3 == 27) or (not (24>3*2**3))
2 # eva lua t e s to True

Listing 4.3 An example Boolean expression composed of some other smaller expressions
that are themselves arithmetic and relational expressions

In cases in which we have a compound Boolean expression composed of
many Boolean operators, we might ask whether all of the components are
always evaluated. This is not the case for some special Boolean expressions.
For example, a chained Boolean expression connecting all subexpressions
with an "or" operator will only be evaluated completely if all subexpressions
evaluate to False. Since the expression is evaluated from left-to-right, the
first appearance of a True evaluation of a subexpression can stop the eval-
uation of all the other subexpressions since the entire expression will be
evaluated to True anyways, no matter what the other subexpressions evaluate
to. This strategy saves valuable computing time. This evaluation strategy is
denoted by the term short-circuit evaluation [208] and was invented by John
McCarthy. A similar strategy holds for a compound Boolean expression in
which the subexpressions are connected by "and" operators. As soon as one
subexpression evaluates to False the entire expression will evaluate to False,
no matter what the evaluation of the other subexpression delivers.

Exercises

• Exercise 4.1.3.1: Evaluate the following arithmetic-relational-Boolean
expression:

116 Coding in Python

1 (4 -3*11 <0) and (4**4==256) and (3 .13 >3.12)

• Exercise 4.1.3.2: Evaluate the following arithmetic-relational-Boolean
expression:

1 (12 -3*4==0) or (15 -3*5 > -1*1.2) and (not (28//4 >7.0))

4.1.4 Bitwise expressions

Instead of using decimal values in expressions, we can also work with bitwise
expressions. Those interpret the values to be operated as sequences of binary
digits, that is, values only allowing 0 and 1. Bitwise operators can modify
such binary values one bit after the other in various ways as can be seen in
Table 4.6.

Table 4.6 Bitwise operators, examples, their meanings, and binary versus decimal.
Operator Example Explanation Binary Decimal
& x & y bitwise and 010 & 110 = 010 2 & 6 = 2
| x | y bitwise or 010 | 110 = 110 2 | 6 = 6
∼ ∼ x bitwise negation ∼ 010 = 101 ∼ 2 = 5
∧ x∧y bitwise xor 010 ∧ 110 = 100 2 ∧ 6 = 4
» x » n n bitwise right shift 010 » 1 = 001 2 » 1 = 1
« x « n n bitwise left shift 010 « 1 = 100 2 « 1 = 4

A more complex example for a bitwise expression would be something
like the expression in Listing 4.4.

1 16 << 3 | 255 >> 2 # eva lua t e s to 191

Listing 4.4 A bitwise expression

Exercise

• Exercise 4.1.4.1: Evaluate the following bitwise expression:

1 5 & 13 & 3 | 14

• Exercise 4.1.4.2: Evaluate the following bitwise expression:

1 23 >> 2 & 23 | (~17)

4.1.5 Mixed expressions

Actually, expressions can exist in various forms composed of subexpressions
based on operands of several datatypes like integers, floating point numbers,

4.2 Data Types and Variables 117

Booleans, but even Strings, or more complex objects. Also, the operators
themselves can fall into the categories of arithmetic, relational, Boolean/logi-
cal, or bitwise operators. Such expressions are denoted in this book as mixed
expressions. In cases in which an expression has a mixed character, we must
understand the precedence of the individual operators which is given as an
overview in Table 4.7 from highest to lowest precedence. The precedence of
the operators describes in which order an expression is evaluated. Parentheses
can be used to change the order of evaluation, that is, subexpressions in
parentheses have the highest precedence. During evaluation of an expression,
the subexpressions are evaluated from highest to lowest precedence, in case
we meet equal precedence, a left to right evaluation order is used.

Table 4.7 Operators and their precedences from highest to lowest.
Operator Symbol(s) Precedence
Arithmetic exponentiation ** 1
Arithmetic/bitwise plus/minus/negation + - ∼ (unary) 2
Arithemtic mult, div * / // 3
Arithmetic plus, minus + - 4
Bitwise shift « » 5
Bitwise and & 6
Bitwise xor ∧ 7
Bitwise or | 8
Relational comparisons == != < <= > >= 9
Boolean not not 10
Boolean and and 11
Boolean or or 12

A mixed expression could be composed of any kind of operators and
operands, see an example in Listing 4.5 which evaluates to True.

1 3*5+4*(6 -1) > 3 or 4*3**2 < 4<<3 and 25//4>6
2 # eva lua t e s to True

Listing 4.5 A mixed expression

Exercises

• Exercise 4.1.5.1: Evaluate the following mixed expression:

1 4*(3 -5**2) /4 > 7 and (3<<3)*7 -6 == 9

• Exercise 4.1.5.2: Evaluate the following mixed expression:

1 (3+4) * (3 - 4) / (3**2+4**2) >= 6 and (22/4 >5)

118 Coding in Python

4.2 Data Types and Variables

Data types and variables are a core ingredient in nearly any programming
language. Each value should have a certain type which can be a basic data
type or one that is more like a composite data type, allowing to put-together
values of a multitude of different data types. Typically, in Python, we find
classes and objects, on which also data types and variables are built. This
means a data type is actually something like a template, that is, a class in
an object-oriented programming language, and a variable is something like
a container created from such a template or class, that is, an instance or
object of this class, allowing to create as many variables of a certain well-
defined data type as we need during coding a Python program. Moreover,
each value can be stored in such a variable created from a class, while the
variable name is fixed but the content, that is, the value of the variable is
modifiable as the name already suggests. Variables do not have to be given
an explicit data type when they are declared since Python is some kind of
weakly typed programming language [207], which is different in strongly
typed programming languages [132] like Java. Moreover, variables cannot
only change their values but they can even change the data type.

In this section, we will learn about basic data types, which we consider
as the numeric data types like integers (mathematically Z), floating point
numbers (mathematically R), or complex numbers with real and imaginary
part (mathematically C). Also, Strings, characters, and Booleans will be intro-
duced as basic data types (see Section 4.2.1). Composite data types, on the
other hand, are those that behave like containers for several values, typically
including values of different basic (but also composite) data types like lists,
tuples, or dictionaries, to mention a few (see Section 4.2.2). In some cases it
is a meaningful operation to convert between different data types, in case, it
is actually possible (like converting the String 33 to the integer of value 33).
The most prominent conversions are described in Section 4.2.3. To store the
value of any data type, we need the concept of variables that is explained in
Section 4.2.4 while we conclude the section by describing values that do not
change during a program execution, called constants (Section 4.2.5).

4.2.1 Basic data types

Some basic data types [104] exist in Python which could be categorized into
numeric data types like integer, floating point, or complex number. Other data
types might be described as String for textual data consisting of characters
and also Boolean for True and False values. Integers are those that contain

4.2 Data Types and Variables 119

whole numbers, positive ones as well as negative ones, also the zero value.
Those integers can be given to a certain base which could indicate that an
integer value is binary, octal, decimal, or hexadecimal, for example (see
Listing 4.6). If no prefix is given, the value is interpreted as decimal which
is the default setting. Other base options are b for binary, o for octal, and x
for hexadecimal. It makes no difference if the prefix characters are given as
capitals or not. The length of the number, that is, in terms of the number of
following digits is unlimited in Python; however, the computer’s memory is
the limit.

1 0b101 == 5 # binary , base 2
2 0o101 == 65 # octa l , base 8
3 0x101 == 257 # hexadecimal , base 16

Listing 4.6 Integer values to several bases

Apart from integer values we have to deal with real numbers which
are given in Python with the so-called floating point numbers that can be
recognized by a decimal point that divides the number into a prefix and a
postfix. Additionally, we can use the exponent notation [19] to indicate the
value of a floating point number which can be given as the letter e or E with
an additional positive or negative integer expressing the exponent to the base
10 (see Listing 4.7).

1 13 .876 == 13 .876
2 . 81 == 0 .81
3 12 . == 12 .0
4 . 32 e5 == 32000.0
5 3 .2 e -3 == 0 .0032

Listing 4.7 Examples of floating point numbers in different notations

The complex numbers consist of a real part and an imaginary part that
are given in the form r + ij in Python while r denotes the real part and i the
imaginary part (see Listing 4.8 for examples).

1 1 .89 + 2 .1 j
2 2 .119 - 3 .14 j
3 - 0 .97 + 1 .27 j

Apart from the numeric values we can find textual values, typically called
strings in Python. Each string has a finite length and consists of so-called
characters, that is, a sequence of characters with a well-defined order. Python
denotes string objects by using the data type str given in single or double
quotes to make string numbers distinguishable from real numeric values, that
is, the string 33 is different from the integer number 33 (see Listing 4.8).

120 Coding in Python

It may be noted that an empty list is allowed in Python which is denoted
by two single quotes ”. It might be seen as the equivalent to the value 0 or
0.0 for integers or floating point numbers. Moreover, with so-called escape
sequences, we can include special characters in a string like \’ or \", that is,
the single or double quotes themselves, but even more of them like new line
\n, tab \t, or carriage return \r, to mention a few. With an r prefix letter, we
can avoid translating the escape sequences in a string, that is, they are just
included in a string as they are.

1 " He l lo world , how are you?"
2 "33 i s a number , but here i t i s a s t r i n g . "
3 ’A s t r i n g can a l s o be wr i t t en in s i n g l e quotes . ’

Listing 4.8 Examples for strings

Finally, the Boolean is a data type giving support for true and for not
true values, that is, denoted by True and False in the programming language
Python. We have seen examples for this already in Section 4.1.3 when we
introduced Boolean expressions.

Exercises

• Exercise 4.2.1.1: What is the result of adding an integer number to a
floating point number?

• Exercise 4.2.1.2: Try the following expressions and describe the results:

1 4/0
2 4/0 .0

4.2.2 Composite data types

Not only the simple data types are of interest, also the composite ones. Those
allow a combination of values of (even) different data types into one. The
most important in-built ones to be mentioned here are lists, tuples, sets,
or dictionaries. We might even create our own composite data types, for
example, by defining classes from which we can derive objects and instances.

A list can be regarded as some kind of container in which we throw data
elements, with the deciding fact that the elements are given in a sequence
hence, have an order which allows to access them via a well-defined index.
The data elements in a list do not have to be of the same data type and a list
can be extended, the values can be modified, as well as data elements can
be removed, at any place in the list. To define a regular (one-dimensional)

4.2 Data Types and Variables 121

list, we use brackets that enclose the contained elements (see Listing 4.9).
As you can see we start with one opening bracket, give the elements of
the list separated by commas, and indicate the end of the list by a closing
bracket. Lists in Python are zero-based, that is, the first element (the most left
one) has the index 0 (and not 1 as we might start counting). Consequently,
accessing individual elements from a list happens by the corresponding index
on which the element can be found. This is done by putting the index into
brackets, like myList[3] if the elements are stored in a list called myList.
Typically, this is done by assigning the list to a variable (will be described
in Section 4.2.4). To modify a value in a list at a corresponding position
we can assign it a value at an index like myList[3] = 17.35. There are
various other ways to access elements from a list, for example more than
one at the same time. This can be done by myList[1:5], which gives back
the values at indices 1–4, as another sublist. We can also give back the rest
of a list starting from a corresponding index like myList[3:] which returns
the elements from the given index until the end of the list. It may be noted
that even two-dimensional, three-dimensional, or even n-dimensional lists are
possible due to the fact that in Python we can add any kind of objects in lists,
consequently also lists themselves, making them to lists of lists, or lists of
lists of lists, and so on (see examples in Listing 4.10).

1 [3 , 3 . 1 4 , False , -23 ,3+4 j , " He l l o "]
Listing 4.9 A list in Python with a few data elements

1 myList = [1 , 2 , 3 , 4 , 5 , 6 , 7]
2 myList [3] = 17 .35
3 myList [1 : 5] # = [2 , 3 , 1 7 . 3 5 , 5]
4 myList [3 :] # = [5 , 6 , 7]
5 my2DList = [[1 , 2 , 3 , 4] , [5 , 2 . 1 1 , 9] , [0 , "Hi"]]

Listing 4.10 Accessing and modifying elements in a list

We can also define tuples which have a deciding difference compared to
lists. It is not allowed to modify tuples in Python after their creation which
can be explained by the fact that those are immutable while lists, on the other
hand, are mutable (we have seen that in Listing 4.10 already). A deciding
benefit of tuples compared to lists is that their content cannot be changed
which is useful in situations in which we should not be allowed to modify
values in a data structure. Moreover, tuples are typically faster to be processed
compared to lists. This means, in cases lots of operations have to be executed
on data structures, we have to consider the usefulness of tuples, in case the
content of our data structures will not be modified during those operations.

122 Coding in Python

Listing 4.11 illustrates how tuples are created and how we can work with
them. Here we also see that tuples are built by using parentheses () instead of
brackets [] as in lists.

1 myTuple = (3 . 1 4 , "Hi" , True)
2 myTuple [2] # = True

Listing 4.11 Creating tuples and accessing values from them

There is one more option to structure data elements apart from lists and
tuples. Sets are another way in Python to create a collection of data elements.
To indicate a set, we enclose the elements in braces {}, separated by commas.
One more difference to lists and tuples comes from the fact that the elements
in a set are unordered (see Listing 4.12 for examples using sets). This leads
to the consequence that we cannot access the set elements by using an index
since indices have no meaning at all if there is no explicit order given. As
in set theory in the field of mathematics we can work with several sets,
for example applying the well-known set operations like union, intersection,
symmetric difference, and many more (we will introduce functions and
methods in Sections 4.6 and 4.9.3).

1 mySetA = {1 , 2 , 3 , 4 , 5}
2 mySetB = {3 , 4 , 5 , 6 , 7}
3

4 mySetC = mySetA . i n t e r s e c t i o n (mySetB) # eva lua t e s to {3 ,4 ,5}

Listing 4.12 Creating sets and applying operations

The problem with sets is that we cannot access the elements contained
in it by just asking about a well-defined index, that is, a position in the set.
This is due to the fact that sets are unordered. However, there is one more
data structure which is called a dictionary that actually also has no index but
the access happens with so-called key-value pairs. This means, to access an
element in a dictionary we just have to know the corresponding key, and we
get the value to this key in return. Dictionary elements are also enclosed by
braces, just like sets, the key-value pairs are separated by commas, and each
key is separated from a value by a sign. A dictionary is also unordered but
compared to sets we can access the elements by using the keys. Listing 4.13
shows some examples for dictionaries and for accessing their values from
keys. Dictionaries can be modified, that is, key-value pairs can be removed,
new ones can be added, and they can be changed. Table 4.8 summarizes the
most important properties of lists, tuples, sets, and dictionaries.

4.2 Data Types and Variables 123

1 myDict = {"Name1" : "Peter " , "Name2" : "Pan" , " year " : 1976}
2 myDict [" year "] # = 1976

Listing 4.13 Dictionaries and accessing their values

Table 4.8 Composite data types with special properties.
Data type Enclosing Separator Example Mutual
List [] , [1,3,2,6] Yes
Tuple () , (1,3,2,6) No
Set {} , {1,3,2,6} Yes
Dictionary {} , and : {"A":1,"B":3,"C":2,"D":6} Yes

Finally, classes can be implemented for creating more data structures like
lists, tuples, sets, and dictionaries but for classes, objects, and instances we
refer to Section 4.9.

Exercises

• Exercise 4.2.2.1: Given a list of natural numbers myList = [3,1,8,9,2].
Can you find a way to transform this list into a set with the same
elements?

• Exercise 4.2.2.2: Given two lists of natural numbers myListA =
[3,1,2,4,3,8] and myListB = [4,5,1,3,7]. Write Python code to create
a new list that contains all elements that are contained in both
lists.

4.2.3 Conversion between data types

In some situations, it is a good advice to convert one value into another
one, particularly in cases where the values have different data types.
Each conversion function follows a different conversion strategy, hence
there is no unique conversion function for any kind of involved data
type pairs. Important functions to receive an int, a float, or a string are
int(), float(), or str(). However, we have to make sure that the conversion
can be applied in a meaningful way. For example, imagine we are
going to convert the string ’hello’ into a floating point number. Is this
a meaningful operation? Listing 4.14 shows some meaningful conversion
examples.

124 Coding in Python

1 i n t (3 . 1 4) # = 3
2 f l o a t (100) # = 100 .0
3 f l o a t (’ 3 .1415 ’) # = 3 .1415
4 s t r (4 2 . 9 9) # = ’ 4 2 . 99 ’
5 s e t ([3 . 1 4 , 7 , - 3]) # = {3 .14 , 7 , - 3}
6 tup l e ({3 . 14 , 7 , - 3 }) # = (3 . 1 4 , 7 , - 3)
7 l i s t (’Bye Bye ’) # = [’B ’ , ’ y ’ , ’ e ’ , ’ ’ , ’B ’ , ’ y ’ , ’ e ’]
8 d i c t (["A" , 1] , ["B" , 2] , ["C" , 3]) # = {"A" :1 , "B" :2 , "C" :3}

Listing 4.14 Some meaningful conversions from one data type to another one

Exercises

• Exercise 4.2.3.1: Convert the floating point number 2.6176 into a
corresponding integer.

• Exercise 4.2.3.2: Given a string ’3.8821’. Convert the string into a
floating point number and then into an int. Is it allowed to convert the
string directly into an int?

4.2.4 Variables

A variable in Python is something like a container in which we can store
values of a certain data type. When we define a variable, we make sure that
some place is reserved in the memory for possible values contained in such a
variable. Since each value has some well-defined data type, the variable that
stores this value also carries this data type. A variable can be declared with
a certain name and initialized with a certain value (see Listing 4.15). This
is done by mentioning the name of the variable on the left-hand side of an
equality sign and put its current value to the right-hand side of the equality
sign. This order must be preserved. It may be noted that variables in Python
can be redeclared at any time as well as their values can be modified, hence
the name variable. Due to the weakly typed language character we can even
change the data type of the same variable, for example, from an int to a string
(see Listing 4.16).

1 l ength = 3 .89

Listing 4.15 Declaring a variable and initializing it with a value

1 l ength = 3 .72
2 l ength = "Given in meters "

Listing 4.16 Variable redeclaration

4.2 Data Types and Variables 125

Variables can even exist in two special forms characterized by the way in
which we can access them and modify them. This brings into play local and
global variables which are discussed in more detail in Sections 4.6 and 4.9.

Exercises

• Exercise 4.2.4.1: Declare three variables called height, width, and length,
initialize them with some floating point values, and compute the value
of the variable volume as the product of the three variable values.

• Exercise 4.2.4.2: Declare two variables a and b, initialize them with
floating point numbers. Compute a Pythagorean triple, that is, a value
for a variable c that the equality a2 + b2 = c2 holds.

4.2.5 Constants

Sometimes we would like to include values that never change during a
program execution. This could be done by a traditional variable, but there
is a chance that the value gets changed at some point which is not desired.
Hence, we would like to give such a variable a special meaning, saying that
its content should stay untouched in any scenario. This is the point in which
we have to use a constant. Actually, in Python there is no special syntax for
that. We just use variables, but we give them a special form by a well-defined
naming convention, that is, using only capital or uppercase letters indicates
that this variable is a constant, although it might be changed. Since constants
are just variables (but never change the values), they can be based on any data
type the standard variables are also based on. The value of a constant should
not be modifiable, we can just use it in one direction, meaning reading the
value it contains (see Listing 4.17 for creating constants).

1 PI = 3.141592
2 E = 2 .7182
3 HIGHEST_SPEED = 240

Listing 4.17 Defining constants in Python

Exercises

• Exercise 4.2.5.1: Define a constant that contains the number of seconds
per day.

126 Coding in Python

• Exercise 4.2.5.2: Define a constant that stores the free fall acceleration
on earth as a range interval.

4.3 Strings and Characters

Strings are the key data type when we have to deal with textual data, for
example, to give feedback to users or to analyze textual content for word
occurrence frequencies or semantic meanings. This does not only hold for
standard text, but it could also be relevant for source code or DNA strings,
both of them are based on textual entities composed of letters/characters from
a given alphabet on its finest granularity level. Hence, text analytics [6] is a
major application domain in the field of data science. This fact makes strings
to relevant topics to study and to research. Strings and characters are special
types of values but on the other hand they can be treated as numeric values as
well, given the fact that we can map each character to a well-defined number,
for example, based on a character table like the ASCII table. However,
working with strings and characters is not as easy as working with numeric
values, since the standard arithmetic operations (Section 4.1.1) cannot be
applied simultaneously. Instead, there are many functions and methods that
support operations on strings and characters.

In this section, we are first looking into methods to apply meaningful
operations on strings and characters, however, there seems to be an endless
list of such methods, too many to mention all of them here (see Section 4.3.1).
Furthermore, we will have a look into character tables like ASCII and
explain the order among those characters (Section 4.3.2). User input and the
validation of user input, in particular with regular expressions is illustrated in
Section 4.3.3. We also describe how a program should be commented which
is possible in several ways (Section 4.3.4).

4.3.1 String methods

There are various functions and methods (to understand what methods are,
see Section 4.9.3) that can be applied to transform, modify, analyze, split,
or reverse strings, just to mention a few. Some methods work on one string
only, some other methods work on several of them, some just process the
string by reading it, some others transform one or more strings into one
or several others. Such a string transformation could be a special kind of
encoding, for example, used for passwords that should not be stored in
its textual plain vanilla form in a system. No matter which kind of string

4.3 Strings and Characters 127

problem we look at, there are various ways to get support from built-in Python
methods. How to create one’s own functions and methods will be explained in
Sections 4.6 and 4.9.3, respectively. Moreover, we will explain the difference
between functions and methods, actually at the moment, the outcome does
not make a difference for us. Apart from string methods, we can also apply
built-in methods or our own created methods on the major building blocks of
such strings, namely characters and their internal organization in tables, for
example, in an ASCII table (Section 4.3.2).

If only one string is involved, we might be interested in the length of that
string, the number of lower- and uppercase letters it contains, the positions
of special characters or substrings in that string, or we might actively change
the string, for example, exchanging special characters or converting it into
uppercase letters only or just one uppercase letter at the beginning. There
are many options to apply functions and methods to strings, Listing 4.18
illustrates some examples.

1 o r i g i n a l S t r i n g = ’ h e l l o how are you? ’
2

3 numChars = l en (o r i g i n a l S t r i n g)
4 newString = o r i g i n a l S t r i n g . c a p i t a l i z e ()
5 newString = o r i g i n a l S t r i n g . encode ()
6 t e s t = o r i g i n a l S t r i n g . i s a s c i i ()

Listing 4.18 String functions and methods if only one string is involved

If two or more strings are involved (see Listing 4.19), we can apply
different kinds of functions and methods.

1 o r i g i n a l S t r i n g = ’ h e l l o how are you? ’
2 t ex t = ’ow ar ’
3

4 o r i g i n a l S t r i n g . f i nd (t ex t)
5 o r i g i n a l S t r i n g . index (t ex t)
6 o r i g i n a l S t r i n g . r ep l a c e (’ are you ’ , ’am I ’)

Listing 4.19 String functions and methods applied to more than one string

Exercises

• Exercise 4.3.1.1: Given a string ’Good morning everybody’. Find a way
to reverse the string.

128 Coding in Python

• Exercise 4.3.1.2: Given two strings ’hello’ and ’how are you’. Find a
way to concatenate both strings into one string.

4.3.2 ASCII code and table

The American Standard Code for Information Interchange (ASCII) [108]
introduced a special encoding standard for characters as well as symbols
that we typically meet during programming tasks. The idea behind ASCII
is that each character, letter, or symbol is assigned a well-defined natural
number, hence ASCII characters can be represented in some kind of table
ordered by these unique numeric identifiers (see Figure 4.1). ASCII allows
128 characters due to the fact that each character is internally represented
by a 7-bit binary string (from 0000000 to 1111111), resulting in 27 =
128 different possibilities for the binary string. There are ways to switch
between a character and the corresponding numeric value, for example,
by using the functions ord() and chr(), illustrated in Listing 4.20. Apart
from ASCII there are some other encoding schemes, one popular one is
denoted by the term Unicode, supporting many more characters than the 128
in ASCII.

Figure 4.1 Characters and symbols with their corresponding numeric identifiers represented
in the ASCII table.

4.3 Strings and Characters 129

1 cha rac t e r = ’ p ’
2

3 i d e n t i f i e r = ord (cha rac t e r)
4 cha rac t e r = chr (i d e n t i f i e r)
5 i d e n t i f i e r = i d e n t i f i e r + 5
6 cha rac t e r = chr (i d e n t i f i e r) # eva lua t e s to ’ u ’

Listing 4.20 Converting between characters and corresponding numeric identifiers based on
the ASCII table

Exercises

• Exercise 4.3.2.1: What is the numeric value of the character ’M’ in the
ASCII table? Write code for that.

• Exercise 4.3.2.2: Given a list of characters myList = [’H’,’e’,’l’,’l’,’o’].
Convert this character list into a numeric ASCII value list. Do the same
with the letters occurring in your own name.

4.3.3 User input and regular expressions

In many scenarios we wish to get user input, for example to get feedback
for a certain task, service, or to evaluate a visualization tool or dashboard.
In its simplest form this can be done by allowing users to type in textual
information to give feedback to the developer of such a tool or a service.
This strategy brings some extra challenges, not only for the users but even
more from a programming perspective. The textual user inputs can be strings,
integers, floating point numbers and they might have certain lengths or text
formats. Actually, this is not a problem at all but we have to react on any
kind of user inputs to avoid our program from crashing, either directly or
after a few steps during its executions, for example when a value, based on
a wrong data type, has to be processed. This process can happen many steps
later, hence it might become difficult to debug the program and to localize the
origin of the error. The standard way to allow user inputs could be done by
using the code in Listing 4.21. The function called input has the goal to output
the given text in parentheses and to assign the variable on the left-hand side
with the user input which is completed by pressing the return key. However,
in a visualization tool, we typically provide more advanced text fields or text
areas to type in some textual information, like in a mask to fill in personal
information as it is known from the most popular web pages that need to
collect this kind of personal information. We can be confronted by at least
three major input validation concepts that we will explain in the following.

130 Coding in Python

1 f eedback = input (’ Please prov ide some f eedback : ’)

Listing 4.21 Allowing user input in textual form

• Length of the input: Actually, users can enter a quite long textual
information, that is, consisting of many characters. If we wish to limit
the number of possible characters, we can validate that by asking for the
length of a string. The function len() has already been introduced earlier
(see Section 4.3.1).

• Content/Data type of the input: An input in this form is typically given
as a value in the string data type. This means if we expect integers
or floating point numbers, we have to check first if the given string
is convertable into such a numeric value. This concept has also been
explained earlier (see Section 4.2.3).

• Specific pattern in the input: Finally, we might want to check if a string
follows a certain pattern or rule. This seems to be more complex than
the standard length and data type validations but actually, it is not really
difficult. The powerful idea that comes into play here are so-called
regular expressions [70, 225]. A regular expression can be understood
as a string itself, consisting of characters that have a meaning, that
is, those characters can be used to derive certain well-defined patterns
in a string. In Python there is a built-in package denoted by re. Such
regular expressions can be checked for several properties like meta
characters (Table 4.9), special sequence characters (Table 4.10), or a
set of characters (Table 4.11), without guaranteeing completeness of the
tables.

Table 4.9 Meta characters and their meaning.
Pattern Meaning Example
. � � Any character ’ho..ar..y.u?’

Some characters ’[c-t]’
* 0 or more ’*n’
+ 1 or more ’+l’
? 0 or 1 ’?p’
{n} n times ’{n}’
| Either or ’yes|no’
() A group ’(mnp)’
∧ Start with ’∧s’
$ Ends with ’l$’

To apply a regular expression to a given string, we have to know some
useful functions and methods (see, e.g., Listing 4.22).

4.3 Strings and Characters 131

Table 4.10 Special sequence characters and their meaning.
Pattern Meaning Example
\s match where white space is ’\sgd h tt’
\S match where no white space is ’\Sgf g tr’
\b match if chars at beginning/end ’\bha’
\B match where chars are, not at beginning ’\Bhi’
\A match if chars at the beginning ’\Ahel’
\d match if digits contained ’\dtr6d1f’
\D match where no digits are ’\Dt5rt65tr’

Table 4.11 Set of characters and their meaning.
Pattern Meaning Example � �
b-t any lower case letter b to t ’f’ � �
01234 any of the digits 0 to 4 ’3’ � �
bgd any of the given letters b, g, d ’d’ � �
0-9 any digit between 0 and 9 ’7’ � � ∧bht any letter apart from b, h, t ’x’ � �� �
0-7 0-5 any 2-digit number between 00 to 75 ’68’ � �
a-zA-Z any letter between a and Z ’T’

1 import re
2

3 i nputSt r ing = ’ I l ove programming ’
4 matches = re . f i n d a l l (’ o ’ , i nputSt r ing)
5 matches = re . s earch (’ o ’ , i nputSt r ing)
6

7 i nputSt r ing2 = ’RE352 ’
8 va l i d a t e = re . match ([A-Z] { 1 , 2 } [0 - 9] { 3 } , i nputSt r ing2)

Listing 4.22 Examples of functions and methods for applying regular expressions to strings

Exercises

• Exercise 4.3.3.1: Write a regular expression for strings that contain
exactly one uppercase letter and end with three digits.

• Exercise 4.3.3.2: For a password validation check, we need a string of at
least eight characters, and that starts with an uppercase letter and at least
one digit. Write a regular expression for that.

4.3.4 Comments

The documentation in a program [227] is very important to let the developer
better understand the functionality in certain parts in the code. This is, in

132 Coding in Python

particular, useful if we have to inspect the code many weeks later and to
quickly get an impression about what is being implemented in a certain piece
of code. Due to this fact, it is a good advice to keep the documentation in
the form of code comments short but still informative to explain the effects
of a code and why it has been implemented in exactly this way. A text line
that starts with a # sign will be ignored by the compiler or interpreter, but
when reading the code, it is always there (see Listing 4.23 for an example of
a comment). Comments can be placed everywhere in a code, it may be noted
that if they are placed at the end of a code line, the rest after the # will be
ignored.

1 # Writing comments i s not d i f f i c u l t
2 pr in t (’ This i s a commented program . ’)
3

4 value = 25 # A comment a f t e r a code l i n e

Listing 4.23 A comment in a Python code

Comments are not limited to one line only. They can span several lines
and many of them can be made at different code places (see Listing 4.24),
also with so-called triple quotes indicating a comment over several lines.

1 # Hel lo
2 # These comments are placed
3 # in s e v e r a l l i n e s
4 pr in t (’ This seems to work ’)
5

6 """
7 Hel lo
8 These comments are placed
9 in s e v e r a l l i n e s

10 """

Listing 4.24 Several comments spread over several lines by using triple quotes

Exercises

• Exercise 4.3.4.1: Write a one-line comment in Python code.
• Exercise 4.3.4.2: Write a multi-line comment in Python code.

4.4 Conditionals and Exceptions

In some situations we wish to branch in the program, meaning there are
two ways to follow, given the fact that a condition can be evaluated in two

4.4 Conditionals and Exceptions 133

directions: Either true or false (Sections 4.1.2 and 4.1.3). This leads to a
binary kind of control flow that can handle one of both ways, depending on
the outcome of a formerly evaluated conditional expression. In some cases,
we even have more than two options which might be modeled by several
conditionals, but, in this case, we might better take the option of allowing
several cases, handling one case after the other until one matching is found,
or in the worst scenario, no case is found, asking to execute a default option.
In some situations, it is even a good idea to handle an exception, meaning
there is a strange, unwanted, or unexpected evaluation that would otherwise
let the program crash if not handled by an exception.

In this section, we will start by explaining the mighty concept of
conditionals allowing a branching in the control flow (Section 4.4.1). We
will also take a look at a so-called pattern matching option that allows
several cases to be handled, but just one or a default one can be executed
(Section 4.4.2). Finally, we describe exceptions and how they can be checked,
even be treated to avoid the crashing of the program (Section 4.4.3).

4.4.1 If and else

In a so-called if-statement [113], we can check whether a condition holds
or not. The if-statement evaluates some kind of logical/Boolean or relational
expression (see Sections 4.1.2 and 4.1.3) to get a True or False value with
which it is decided what to do, that is, if the condition allows a following
code to be executed (see Listing 4.25). In this example the indented code
after the if-statement is only executed in case the variable value contains a
number greater than 0.0 which evaluates to True in this special example. It
may be noted that there can be many more code lines after an if-statement,
all of the indented ones belong to the body of the if-statement and will be
executed one after the other. In Python we use this indentation principle, in
other programming languages parentheses might be used.

1 value = 0 .05
2

3 i f value > 0 . 0 :
4 pr in t (’The value i s g r e a t e r than 0 . 0 . ’)

Listing 4.25 An if-condition can be used to allow code to be executed or not

By just using an if-statement, we do not have a real branching in the
control flow, for this we need an else branch, meaning there is always an
option, no matter how the conditional expression is evaluated, True or False
(see Listing 4.26).

134 Coding in Python

1 value = - 0 .05
2

3 i f value > 0 . 0 :
4 pr in t (’The value i s g r e a t e r than 0 . 0 . ’)
5 e l s e :
6 pr in t (’The value i s sma l l e r than or equal to 0 . 0 . ’)

Listing 4.26 The else part of a conditional can be used as an alternative in cases the
if-statement branch is not executed

In Python there is even another alternative: the elif option. This one
gives a chance to proceed as another alternative in cases the if-statement is
evaluated to False (see Listing 4.27).

1 value = 0 .00
2

3 i f value > 0 . 0 :
4 pr in t (’The value i s g r e a t e r than 0 . 0 .)
5 e l i f value == 0 . 0 :
6 pr in t (’The value i s equal to 0 . 0 . ’)
7 e l s e :
8 pr in t (’The value i s sma l l e r than 0 . 0 . ’)

Listing 4.27 The elif option can be used as an alternative in cases the if-statement is not
followed

The keyword ’pass’ can even be used in cases in which there are no
statements after an if-branch. The pass keyword replaces the otherwise empty
code block, however, this happens only in rare cases.

Exercises

• Exercise 4.4.1.1: Write a program to test whether a natural number is
odd or even.

• Exercise 4.4.1.2: Given a variable containing a string. Test whether this
string contains uppercase letters and more than 10 characters.

4.4.2 Pattern matching

In Python there is no explicit switch statement as in other programming
languages but instead, there is some kind of pattern matching strategy that
tries to match pattern by pattern until one is found, or a default case is reached,
in case no pattern matches from the given ones. The default case is indicated

4.4 Conditionals and Exceptions 135

by an underscore pattern. This pattern matching strategy creates a branching
effect that allows more than two or three possibilities (if, elif, else) by using
a multitude of patterns (see Listing 4.28).

1 value = ’ Mercedes ’
2

3 match value :
4 case ’ Audi ’ :
5 pr in t (’Your car i s an Audi . ’)
6 case ’ Peugeot ’ :
7 pr in t (’Your car i s a Peugeot . ’)
8 case ’ Mercedes ’ :
9 pr in t (’Your car i s a Mercedes . ’)

10 case _:
11 pr in t (’The brand o f your car i s unknown . ’)

Listing 4.28 A multitude of options are possible by using a match case pattern

Exercises

• Exercise 4.4.2.1: Write code for a pattern matching that checks different
grades and outputs whether the grade is very good, good, medium, bad,
or very bad.

• Exercise 4.4.2.2: Write code for a pattern matching that checks different
sports activities and outputs the number of players required.

4.4.3 Exceptions

A syntax error [253] can occur if a piece of code is not properly defined
to make it understandable for the compiler or interpreter. This kind of error
happens before the actual program execution, that is, before runtime, already
in the program translation phase. A semantic error [182] is an error that is not
detected by the compiler but rather by the programmers themselves. Semantic
errors create unwanted effects, those that do not produce the functionality the
programmers desired. A third kind of error is an exception. A program might
be syntactically and semantically correct, but there might be some places
in which the code is not running properly, but just for a few ’exceptional’
instances of a problem, hence those are so-called exceptions. Unlike syntactic
or semantic errors, exceptions can be handled (in case one knows them). If
they are not handled they can result in errors and the program might crash
(see Listing 4.29 for an exception and Listing 4.30 for handling it). Apart

136 Coding in Python

from division-by-zero errors, there are various kinds of exceptions, typically
indicated in error messages given by the compiler in cases the programs crash
due to some unforeseen reasons. Python supports some built-in exceptions
with clear exception information to provide some feedback about the type of
error, however the programmers can also create their own exceptions.

1 value = 0
2 d iv i s i onVa lue = 6/ value

Listing 4.29 An error caused by a division by zero

1 value = 0
2

3 t ry :
4 d iv i s i onVa lue = 6/ value
5 break
6 except ZeroDiv i s i onError :
7 pr in t (’ D iv i s i on by zero i s not al lowed ’)

Listing 4.30 Handling a division by zero error

To handle an exception we enclose the critical program code into
so-called try-except statements. First, the try block is executed. If there is
no exception, the try statement is processed, and the except part is skipped.
If there is an exception, the rest of the code block after the try is skipped
and the except part is executed, in case the name of the exception matches
the real exception. Finally, the code of the try-except part is executed. This
means, although there was some type of error in the program, the program
will not crash, instead it will handle the exception, here with a printed string.

Exercises

• Exercise 4.4.3.1: After a user input we would like to proceed with the
user-defined number, but unfortunately, this number is a string. Write
code to handle such a conversion error.

• Exercise 4.4.3.2: In the example Listing 4.30 extend the code of the
except part to provide a value for the divisionValue variable even if it
generates a division-by-zero error.

4.5 Loops

To avoid implementing the same kind of functionality all the time, only
differing in the size of an argument, for example, we can make use of

4.5 Loops 137

so-called loops [159]. Those are simple constructs that repeat instructions
until a certain well-defined termination condition is met. There are two
types of loops: definite ones and indefinite ones. This means, for the first
type of loops we know how many iterations are made until the process
terminates, for the second type of loops we have no idea how many iterations
have to be made until the process terminates. The termination is decided
during the runtime of the loop and has to be computed in some kind
of dynamic termination condition. For this reason (and maybe for some
others as well) Python supports for-loops and while-loops, both of them,
contain a termination condition, however it is given in two different ways.
Loops can even run endlessly, in case the termination condition is never
met. Moreover, loops can be implemented inside loops and the loop types
can even be mixed, that is, for-loops can be contained in while-loops and
vice versa.

In this section, we start by introducing the principle of definite iteration
and focus on the so-called for-loops (Section 4.5.1). Apart from definite
iterations we look into indefinite iterations, in this case we describe the
concept of while-loops and explain termination conditions (Section 4.5.2).
Finally, we illustrate how loops can be nested, meaning there is actually no
limit to the number of loops contained in each other, but it may be noted that
an unclever nesting can cause high runtimes (Section 4.5.3).

4.5.1 Definite iteration

The for-loop is used to process a list or set of elements. This list or set
can be based not only on a real list but also on a string (which is actually
a list of characters) or on a range, for example as an interval of natural
numbers (which again is some kind of list). The order of the list (or sequence)
is important to start somewhere and end somewhere during the processing
strategy. In programming terms we say that we iterate over the sequence,
hence we know exactly how many steps are needed to process all elements,
which give this iteration strategy its name, the definite iteration. The first line
of a for-loop just describes which elements are involved in an iteration and
in which order, the rest of the for-loop, that is, its body describes what to
do exactly with each of the elements, one-by-one. Listing 4.31 illustrates an
example for such a for-loop iterating over a list of names and sums up the
numbers of letters contained in each name string.

138 Coding in Python

1 names = [’Marco ’ , ’ Michael ’ , ’ Heiko ’ , ’ John ’]
2 numOfLetters = 0
3

4 f o r name in names :
5 numOfLetters += l en (name)
6

7 pr in t (numOfLetters)

Listing 4.31 A for-loop illustrating a definite iteration over a list of names

There are even break and continue statements to stop the iteration if a
certain element is found or has a certain property. Moreover, we do not have
to stop it, but we might skip it instead and continue the iteration after it,
hence the corresponding element is omitted in the process (see Listings 4.32
and 4.33).

1 names = [’Marco ’ , ’ Michael ’ , ’ Heiko ’ , ’ John ’]
2 numOfLetters = 0
3

4 f o r name in names :
5 i f name == ’ Michael ’ :
6 break
7 numOfLetters += l en (name)
8

9 pr in t (numOfLetters)

Listing 4.32 A for-loop with a break statement

1 names = [’Marco ’ , ’ Michael ’ , ’ Heiko ’ , ’ John ’]
2 numOfLetters = 0
3

4 f o r name in names :
5 i f name == ’ Heiko ’ :
6 cont inue
7 numOfLetters += l en (name)
8

9 pr in t (numOfLetters)

Listing 4.33 A for-loop with a continue statement

Apart from using a list or sequence of elements we can operate on a
certain interval with natural numbers. The easiest way to get that done is
by applying the range() function. This creates a sequence of numbers and
then the for-loop iterates over this sequence (see Listing 4.34). Actually,
the iteration can increment by one, starting from 0, between left and right
interval borders, or even increment by a given value, typically specified as
a third parameter. There is even an else statement which can be given after

�

�

4.5 Loops 139

the for-loop has finished. Moreover, a pass statement can be used in cases the
body of a for-loop is empty for some reason.

1 n = 5 ;
2

3 f o r i in range (10) :
4 n+=i **2
5

6 f o r i in range (7 , 17) :
7 n-= i
8

9 f o r i in range (10 , 20 , 4) :
10 n+=i

Listing 4.34 A for-loop defined on the range()-function

Exercises

• Exercise 4.5.1.1: Implement a for-loop that sums up the natural numbers
100from 1 to 100, that is, i.i=1

• Exercise 4.5.1.2: Implement a for-loop that computes the factorial of a
nnatural number n ∈ N given as n! := i for a value of n = 20.i=1

4.5.2 Indefinite iteration

In contrast to the for-loop which is typically used for a definite iteration, the
while-loop is the most frequent used concept for indefinite iteration. Actually,
in cases in which it is unclear how long or how often an iteration has to
run, a while-loop is suited better since it allows to start the loop without
clearly specifying how long or how often it has to run. Each for-loop can
be transformed into a corresponding while-loop by just using the number
of iterations in the for-loop as a break up criterion in the while-loop. The
other direction, transforming a while-loop into a for-loop, is more difficult,
sometimes even impossible. The reason is that we cannot just use the
conditional test expression in a while-loop as a sequence to iterate over.
The condition itself might be dependent on side effects that we cannot easily
understand when starting the loop. However, even if it is possible, we should
follow the principle of using for-loops for definite iterations and while-loops
for indefinite iterations. Listing 4.35 illustrates an example for a while-loop.
The body of the while-loop is executed as long as the test expression in
the first line is evaluated to true; otherwise, the loop stops and the control
flow proceeds regularly after the last statement in the loop’s body. The

140 Coding in Python

test expression is only checked once at the beginning, after each iteration,
independent of the fact whether or not the test expression might change
during executing the statements in the body of the while-loop.

1 value = 100
2

3 whi le (va lue % 3 != 0) :
4 value = value /2
5

6 pr in t (va lue)

Listing 4.35 A while-loop iterates in an indefinite way

Similar to the for-loop, also the while-loop allows break-statements and
an else option at the end.

Exercises

• Exercise 4.5.2.1: Implement a while-loop that runs as long as the term
1.0n := n + is smaller than a given number. n

• Exercise 4.5.2.2: Implement a while-loop that does the same as the
for-loop in Listing 4.31.

4.5.3 Nested loops

The programming world would be boring if it was not allowed to create more
complex loops, for example in a nested fashion. This means loops can be
contained inside other loops, even as a mixture of while- and for-loops (see
Listing 4.36).

1 f o r i in range (10) :
2 whi le i * i <50:
3 i = i+1
4 pr in t (i * i)

Listing 4.36 An example for nesting loops

Exercises

• Exercise 4.5.3.1: Implement a for-loop that processes a list of strings,
element by element, and that processes each string character by
character to count the number of uppercase letters.

4.6 Functions 141

• Exercise 4.5.3.2: Implement a three-dimensional list containing natural
numbers. Use three nested for-loops to sum up all values in the 3D list.

4.6 Functions

Functions are the major building blocks of programming since they allow
to encapsulate subroutines into code blocks. A subroutine is understood as
a small algorithm that works with input and output parameters, computing
something useful. The whole program is full of such subroutines, being
responsible for the functionalities a software can have. Using functions makes
coding much easier, with less text, and even more maintainable. For example,
if the functionality of a subroutine has to be changed without using functions
we have to find all locations in the code and adapt the subroutine. This is
a tedious, time-consuming, and error-prone task, also with high chances to
include inconsistencies in the code. For this reason, functions can be used to
put such subroutines at one place. Each time we have to adapt something in
the subroutine we only have to do this once, in the corresponding function,
which accelerates the adaptation process and reduces the chance to include
inconsistencies that would lead to the program to crash.

In this section, we describe the concept of creating one’s own functions
(Section 4.6.1) with and without return parameters and with an arbitrary
number of such parameters, also with different data types. Section 4.6.2
illustrates how functions can be called, taking into account their parameter
lists and data types as well. Apart from one, even several functions can be
integrated, in some kind of nested structure, a strategy that is illustrated in
Section 4.6.3. Moreover, the variables inside a function are typically used
in a local way, but for some reason, we could even define them as global
variables (Section 4.6.4).

4.6.1 Defining a function

Before using such self-built functions, we have to find a way to define them.
This means we have to specify a name, the input and output parameters, and
the computation routine itself in the body of the function. A computation
routine can be as simple as finding a maximum value among a list of
numeric values for projecting high-dimensional data to a lower-dimensional
space [235]. No matter which functionality we create, the definition of a
function always follows the same principle, depending on the problem itself,
it can be more or less complex. The most important thing when defining a

142 Coding in Python

function is to know the Python keyword for that which is given by def, telling
us that we are going to define a function. Listing 4.37 shows an example
for a simple function that is named sum and gets 3 input parameters x, y,
and z. Those are summed up and the result is returned as the only output
parameter. It may be noted that a function can have as many input and output
parameters as we like (separated by commas), also no inputs and no outputs
are possible. Returning a result is done by the return statement (in the last line
of a function definition). This means the function is completely processed and
we will return in the control flow to the place where the function was called
and process the next statements, but now we know the result of a computation
(a simple or complex one) and can use it in the program.

1 de f sum(x , y , z) :
2 re turn x+y+z

Listing 4.37 A simple function definition in Python

Exercises

• Exercise 4.6.1.1: Define a function that computes the factorial of n, that
is, the product of all natural numbers from 1 to n.

• Exercise 4.6.1.2: Define a function that takes two lists with numeric
values as arguments and adds them element by element, returning a new
list containing the sums of the elements.

4.6.2 Calling a function

Defining a function is one side of the problem, calling it is the other. However,
calling a function is not difficult, in case, we know its name and its input
and output parameters. Apart from the number of parameters we should also
know which data types they are based on to make the call a reliable one,
that is, avoid runtime errors during the program execution. The syntactic
errors will typically be found by the compiler before the execution but
still even if a program is syntactically correct there is no guarantee that
it is also semantically correct. For example, an originally intended float
data type might be mistaken for an integer data type. The program itself
might be syntactically correct, for example adding two integers happens in a
similar way as adding two floating point numbers, but the precision after the
execution is a different one. Such a problem should be detected when calling
the function, even if the definition might be syntactically correct. Calling a

4.6 Functions 143

function happens by its name and the parameter list while the parameters are
replaced by real values in the call, to allow the function to be executed and
to compute a result. Listing 4.38 gives an example showing how to call a
function, in this case the function sum on three arguments from Listing 4.37.
The three values are given as variables and build the input parameters of the
sum function. Since the function is already properly defined, it is known what
to do with these values while the returned value from the function is finally
assigned to another variable called result which can be seen in the main code.

1 value1 = 2 .3
2 value2 = 4 .5
3 value3 = 1 .3
4

5 r e s u l t = sum(value1 , value2 , value3)

Listing 4.38 Calling a function happens by using its name and its parameter list

In some cases, where we call a function with a wrong parameter list,
for example, the input parameters we get an error message. Moreover, if
the number of output parameters does not match with the assignment to a
variable or several variables, this will also cause an error. Also a wrong order
of the parameters can cause an error, in case the data types do not match,
however, if the data types match for some reason, we might have the problem
of wrong value assignments. This will not be detected by the compiler but
we will obtain a wrong result that is caused by a semantics error, that is, a
semantically wrong assignment.

There are even options in Python to call a function when the number of
the input arguments might be unknown at the moment of the function call.
For example, if a list of values is given as input parameters we can use the *
pattern to let the function expect as many values as are given in the current
situation of the function call (see Listing 4.39).

1 de f bestStudent (* s tudents) :
2 re turn ("The cu r r en t l y best student i s " + s tudents [0])
3

4 bestStudent ("Michael " , "Marco" , " Ingo" , "David")

Listing 4.39 Using a star to indicate an unknown number of arguments at the moment of a
function call

It is even possible to explicitly assign the used variables in a function
in the function call, making the ordering of the arguments irrelevant, but
negatively we have to know the keys that are needed to properly make the
key-argument assignments (Listing 4.40).

144 Coding in Python

1 de f bestStudent (student4 , student3 , student2 , student1) :
2 re turn ("The cu r r en t l y best student i s " + student1)
3

4 bestStudent (student1 = "Michael " , student2 = "Marco" ,
student3 = " Ingo" , student4 = "David")

Listing 4.40 Using key-value pairs at a function call

Exercises

• Exercise 4.6.2.1: Call the function in Listing 4.37 to compute the sum of
the values for each parameter by varying the value between 0 and 100.
Hint: Use a nested for-loop.

• Exercise 4.6.2.2: Extend the function from Listing 4.37 to allow an
unknown number of numeric arguments. Call the function by varying
the number of the arguments.

4.6.3 Nesting of functions

Defining and calling a function can also be based on a multitude of other
functions, in some kind of nested structure. For example, to compute a
clustering from a list of two-dimensional points it might be important to
compute the distance of pairs of those points, to create and to validate the
computed clustering. This distance function can be implemented inside the
clustering function, but it would be better to call the distance function inside
the clustering function. Maybe the distance function, which is a very basic
computation, has to be applied in several other functions, apart from only
the one for the clustering computation. This makes the distance function
more general in some way, hence it is a good strategy to create some kind
of function set whose elements can be called inside each other whenever
required. An example for simple nested functions is given in Listing 4.41.

1 de f sum(x , y , z) :
2 re turn x+y+z
3

4 de f average (x , y , z) :
5 re turn sum(x , y , z) /3
6

7 average (4 . 3 , 2 . 7 , 8 . 9)

Listing 4.41 Nesting functions can be a powerful coding strategy to avoid reimplementing
the same basic functions again and again many times

4.6 Functions 145

Exercises

• Exercise 4.6.3.1: Define a function for computing the average length of
strings in a given string list. Use the function len() to compute the length
of each string.

• Exercise 4.6.3.2: Define a function to compute the ratio between
maximum and minimum of a given list of floating point numbers. Use
the functions min and max.

4.6.4 Local and global variables

Typically, in a function in Python we use local variables. The reason is
that they cannot be accessed and modified from the outside of the function,
a programming concept that is known under the term encapsulation. This
mighty principle is important to avoid ugly side effects that would allow to
change values inside a function from anywhere, leading to problems when
maintaining the code or detecting errors. But in some rare situations it might
make sense to define a variable inside a function as a global variable, that is,
one that is accessible from everywhere, can even be modified, and flows into
the computation inside the function. But this strategy should be taken with
care since it can create unwanted side effects. Listing 4.42 illustrates how to
define a variable inside a function as global. This definition uses the value of
the global variable nFact from the main program inside the function which
will not create the right result for the factorial of n. This error can happen if
we accidentally used the same variable name somewhere in the program and
now the value is used in the function without being aware of it.

1 nFact = 5
2

3 de f nFac to r i a l (n) :
4 g l oba l nFact
5

6 f o r i in range (1 , n+1) :
7 nFact = nFact* i
8 re turn nFact

Listing 4.42 A global variable inside a function definition

Exercises

• Exercise 4.6.4.1: Define a function that computes the product of 3
natural numbers. Use a global variable to store the result of the
computation.

146 Coding in Python

• Exercise 4.6.4.2: Call the function in Listing 4.42 without initializing
the value of the global variable nFact in the main program. What is the
effect?

4.7 More Complex Functions

The functions we discussed so far are quite simple, that is, plain vanilla
function definitions and calls. There are other options in Python to create
functions, for example functions calling themselves until a termination
condition is reached. This strategy is known as recursion [234] since a
function is recursively defined on itself, starting with a problem that is solved
by recursively reducing the size of the problem until it is small enough to
be trivial, that is, to lead to a termination. The input and output parameters
of functions can themselves be functions bringing us to the higher-order
functions. Functions do not have to be named, they can even be defined and
called anonymously, in so-called lambda expressions. This allows to use a
function ’on-the-fly’ by defining and calling it exactly at the place in the code
where it is needed.

In this section, we are going to explain more complex functions by
starting with recursion and tail recursion (Section 4.7.1), that is, a kind of
recursion that reduces the memory consumption by more or less directly
evaluating the expression that is built during the recursive process. The
next recursive call is started when the expression is computed which avoids
creating long recursion chains or trees. Functions with functions as input and
output parameters are described in Section 4.7.2 as higher-order functions.
Finally, we discuss the usefulness of anonymous functions, so-called lambda
expressions in Section 4.7.3.

4.7.1 Recursion versus tail recursion

Recursion is a mighty and elegant concept that is based on the idea of
functions calling themselves. A function is typically used to solve some kind
of algorithmic problem, a simple or complex one. In some scenarios the
situation is that simple that we just create a ’traditional’ function and provide
the result in one or a few well-defined steps. An example would be a function
for computing the maximum of two given natural numbers, for which we do
not need recursion. In cases in which the problem is quite hard but can be
solved by reducing the hard problem to a little bit weaker one we are in a

4.7 More Complex Functions 147

situation in which recursion might make sense. The idea behind this concept
is that the problem can be made weaker and weaker (like using loops) until a
basic case is reached for which we know the answer. Typically, this process
generates a chain or tree of executions that have to be handled either during
the recursion or after the recursion has terminated. In this section we look into
both perspectives, the first one sometimes bringing problems with memory
consumption since all of the executions might cause values that have to be
stored somewhere until we reach the stage of putting everything together to
obtain the result. Listing 4.43 illustrates an example of a traditional recursive
function for computing the factorial of a natural number n. Be careful with
the valid numbers that can be used as the input values for this function.
If a negative number is given as input the result will always be 1 which
is mathematically not correct, that is, undefined. A similar aspect holds for
floating point numbers. Another big issue with recursion, apart from memory
consumption, can be the fact that the termination condition is never reached,
ending in a never-ending recursive call.

1 de f n f a c t o r i a l (n) :
2 i f (n > 0) :
3 re turn n* n f a c t o r i a l (n - 1)
4 e l s e :
5 re turn 1

Listing 4.43 A recursive function for computing the factorial of a natural number n

The recursive function for the factorial of n generates a chained
expression since n! := n · (n− 1) · (n− 2) · . . . · 3 · 2 · 1. For longer recursive
calls this could lead to a high memory consumption. However, apart from a
chain shape the recursive call could create some kind of tree-like shape, in
the example in Listing 4.44 a so-called binary tree since there are always two
branches in the recursive call. This means the recursion tree for this function
has some kind of exponential growing. The function we are talking about
here is the so-called Fibonacci function [112] that is mathematically given in
Equation 4.1.

⎧ ffib(n− 1) + ffib(n− 2) if n ≥ 2
ffib(n) := 1 if n = 1 (4.1) ⎩

0 if n = 0

148 Coding in Python

1 de f f i b (n) :
2 i f n == 0 :
3 re turn 0
4 e l i f n == 1 :
5 re turn 1
6 e l s e
7 re turn f i b (n - 1) + f i b (n - 2)

Listing 4.44 The Fibonacci numbers can be computed in a recursive way generating some
kind of tree structure for the recursive calls

An even more fascinating example (Equation 4.2) for a recursive function
is the so-called Ackermann function [175]. This function is mathematically
defined as

⎧ n + 1 if m = 0
Ack(m, n) := Ack(m − 1, 1) if m > 0, n = 0 (4.2) ⎩

Ack(m − 1, Ack(m, n − 1)) if m > 0, n > 0

The Ackermann function which got its name after Wilhelm Ackermann is
said to be one of its simplest examples of a function that is total computable
and not primitive recursive as well [188]. From a programming perspective
we can implement the function as in Listing 4.45.

1 de f acker (m, n) :
2 i f m == 0 :
3 re turn n+1
4 e l i f m > 0 and n == 0 :
5 re turn acker (m-1 , 1)
6 e l s e :
7 re turn acker (m-1 , acker (m, n - 1))

Listing 4.45 A recursive implementation in Python for the Ackermann function

Not only the memory consumption but also the runtime of such recursive
functions can be terribly high which makes them unusable in its ’traditional’
implementation. This can be seen in the example of the Fibonacci numbers,
but it is even more visible if we run the Ackermann function example. One
problem with the recursion can be that the execution chain or tree gets really
large, another problem can be that many calls get repeatedly computed again
and again although the result is already known. These two problems can be
solved in some cases if we use an iterative version of the recursion, sometimes
also called tail recursion (or iterative recursion, repetitive recursion). The
idea behind tail recursion is that the result of intermediate subexpressions

4.7 More Complex Functions 149

is already computed before the next recursion step is done. This reduces
the required memory a lot and as well the chance to recompute the same
expressions all the time, that is, memory and time can be saved at the same
time with this simple idea. Listing 4.46 gives an example of a tail recursive
function for the Fibonacci numbers.

1 de f f i b (n , a , b) :
2 i f n <= 1 :
3 re turn a + b
4 e l s e :
5 re turn f i b (n - 1 , b+a , a)
6

7 de f t a i l r e c u r s i v e f i b (n) :
8 re turn f i b (n - 1 , 1 , 0)
9

10 pr in t (t a i l r e c u r s i v e f i b (10))

Listing 4.46 A tail recursive function for the Fibonacci numbers

The variables a and b in the listing are responsible for the intermediate
computations, hence the next recursion step always needs these intermediate
results to proceed. This reduces the memory consumption.

Exercises

• Exercise 4.7.1.1: Evaluate the Ackermann function for (1,1), (2,2), and
(3,3). What are the results? Do you run into challenges when getting
those results?

• Exercise 4.7.1.2: Define a tail recursive function for reversing a list of
natural numbers.

4.7.2 Higher-order functions

A function is called a higher-order function if its input or output parameters
are functions as well. Actually, such higher-order functions are treated
very similarly to the standard functions apart from the fact that they can
operate on other functions as well. Listing 4.47 gives an example of such
a function creating another function inside its function body and returning
this newly created function. Here the idea is to create a function that allows
to multiply two numbers while one of the numbers is given by the function
itself and the other one can be given as an argument in the newly created
function.

150 Coding in Python

1 de f makeMult ip l i er (x) :
2 de f mu l t i p l i e r (y) :
3 re turn x*y
4 re turn mu l t i p l i e r
5

6 multiplyBy50 = makeMult ip l i er (50)
7

8 pr in t (multiplyBy50 (20)) # r e s u l t = 1000

Listing 4.47 An example of a simple higher-order function returning a function

Exercises

• Exercise 4.7.2.1: Define a higher-order function that creates a function
for adding 3 floating point numbers while one of the numbers is fixed in
the created function that is returned.

• Exercise 4.7.2.2: Define a higher-order function that returns two
functions, one for adding and one for multiplying the two given numbers
similar to the example in Listing 4.47.

4.7.3 Lambda expressions

In some situations, it is a good idea to use so-called anonymous functions.
Those can be implemented in some kind of on-the-fly style due to their typical
short nameless statements. They can be regarded as a programming style
coming quickly to the point without first thinking about a name and a return
statement, hence being a quicker way to create functions. To do this, so-called
lambda expressions are used that can be added inside other expressions.
Listing 4.48 illustrates some examples for using lambda expressions. Such
lambda expressions or lambda functions can have any number of parameters.
However, they are just small code pieces allowing one expression.

1 y = lambda x : x * 4
2 pr in t (y (3))
3

4 z = lambda x , y : x**2 + 2*x*y - 4*x + 3
5 pr in t (z (3 . 4 , 5 . 1))

Listing 4.48 Lambda expressions can be used as some kind of anonymous functions

The good thing with lambda expressions comes from the fact that they
can even be included in other functions, like the example we have shown in
Section 4.7.2 on higher-order functions. Here we could modify the example

4.8 Reading and Writing Data 151

in Listing 4.47 to integrate an anonymous lambda function instead of a named
function with a return value (see Listing 4.49).

1 de f makeMult ip l i er (x) :
2 re turn lambda y : y * x
3

4 multiplyBy50 = makeMult ip l i er (50)
5

6 pr in t (multiplyBy50 (20)) # r e s u l t = 1000

Listing 4.49 A lambda expression inside another higher-order function

Exercises

• Exercise 4.7.3.1: Define an anonymous function for multiplying 3
numbers by using a lambda expression.

• Exercise 4.7.3.2: Define an anonymous function for checking a given
input string on containing exactly 3 digits and 2 uppercase letters.

4.8 Reading and Writing Data

Not only for visualization tools [1, 49, 65, 154], it is also important to be able
to read and write data. Also, for general applications in data science [235],
the data itself is the major ingredient. It can come in a multitude of formats
like comma-separated values for tabular/multivariate data, a Newick format
for hierarchical data, or a matrix-like format for graph and network data,
just to mention a few. Reading and parsing the data typically depends on the
given data format, being even more complex if the data is spread over several
data files. Moreover, the place from which we have to read the data makes a
difference for a visualization tool’s data reading strategies, for example the
data could be accessible on a local machine or it might be located on a server
accessible via a URL. Even more, the data could be given as text or image
files or it could be stored in a database. Also, the data could be static or
dynamically changing, and again the dynamics of the data could be given as
a static data source but in the most challenging form it could be given as a
real-time dataset that is updated from time to time, in different granularity
levels ranging from seconds, to minutes, to hours, to days, or even years and
decades. If an analysis and visualization is required on the finest granularity it
can be quite hard to keep up with the incoming data, hence apart from loading
and reading the whole dataset, in such a scenario only some kind of data

152 Coding in Python

sampling is done, reading and processing the data only if this is necessary,
but this again brings into play other challenges.

In this section, we are going to first describe user input as a way to
communicate textual information to a system. This ’user data’ can then
be used as a dialogue between the users and the system or it might be
used to analyze user feedback about a system (Section 4.8.1). Directly
reading from a file, either textual or binary data is important to get real
data into a visualization tool, however, the data can come in a multitude
of types and formats that have to be taken into account during reading
and parsing it (Section 4.8.2). In some scenarios we might wish to write
data to a data file, for example after a data exploration process when
storing the relevant information (Section 4.8.3). Sometimes the data to be
explored is stored on a local data source but in many more situations
we can access the data from a server, online, that is, as a web-based
data reading approach, also beneficial for real-time data that is regularly
updated on a server and allows an up-to-date state of the visualization tool
(Section 4.8.4).

4.8.1 User input

Allowing users to input information can be important, for example to ask
for login or personal details as well as a password. This simple string-based
data is handled by an in-built function given as input(). This function takes as
argument a string and waits until a user has typed in a text and has pressed the
enter key. Listing 4.50 gives an example for code asking someone for filling
in his or her name and then assigning this name to a variable.

1 name = input (" Please input your name : ")

Listing 4.50 Asking users to input a name that is assigned to a variable

One issue with the input function is the fact that Python always expects
the data type String from the input. If we were asking for numeric inputs
like integers or floating point numbers we are not completely lost, but
we have to convert the string into the corresponding number first (see
Listing 4.51).

1 t ex t = input (" Please input the exact temperature : ")
2 temperature = f l o a t (t ext)

Listing 4.51 Converting an input string into a numeric value

4.8 Reading and Writing Data 153

Exercises

• Exercise 4.8.1.1: Write Python code to ask users about their hobbies and
store those hobbies in a list of strings.

• Exercise 4.8.1.2: Write a function that asks a user about an integer
number n and then computes the factorial of n. Can you also write this
function as an anonymous lambda expression?

4.8.2 Reading from a file

Reading data from a file is quite easy, however in cases we already know
the data format we might have different options to get the data in an internal
format to further process it algorithmically or show it visually. There is also
a difference if the data has a pure textual nature or if it contains images
that cannot be interpreted as pure text. Image data has a different semantic
understanding than textual data has, hence it is important to read in the data
depending on this aspect. Another problem to be solved is the fact where
the file is located, that is, in which folder which can be given as a file path
as an argument in the reading function. Moreover, the file might be stored
on a server accessible via a URL or on a web page (see Section 4.8.4).
Reading and parsing the data is one thing, processing it correctly another one.
Listing 4.52 shows an example for reading data from a local file by using the
built-in functions open() and read(). With open() we obtain a file object (see
Section 4.9 for more information on object-oriented programming) while the
"r" option specifies that the file is prepared for reading. With the encoding
we can specify the symbol set on which the text is based, here UTF8 but
we already know ASCII (Section 4.3.2). This object contains methods, one
of them is the read() method with which we can read the content from
the file.

1 f i l e = open ("C:\\ Users \\Michael \\ d a t a f i l e . tx t " , encoding = "
ut f8 " , " r ")

2 t ex t = f i l e . read ()

Listing 4.52 Reading data from a local file

With read(), we always read the whole content of the file but in most of
the situations we only want to read a small piece of the file, maybe line by
line or even character by character. Listing 4.53 shows an example for this.
Reading line by line works by using some kind of line iterator that moves one
line further after each call of the function.

154 Coding in Python

1 f i l e = open ("C:\\ Users \\Michael \\ d a t a f i l e . tx t " , " r ")
2 t ex t = f i l e . read (20) # only read ing 20 cha ra c t e r s
3 text1 = f i l e . r e ad l i n e () # read ing the "next " l i n e (1 s t l i n e)
4 text2 = f i l e . r e ad l i n e () # read ing the "next " l i n e (2nd l i n e)
5

6 f o r l i n e in f i l e : # read ing l i n e by l i n e with a loop
7 t e x t l i n e = l i n e
8 pr in t (l en (t e x t l i n e))
9

10 f i l e . c l o s e ()

Listing 4.53 Reading smaller pieces of a text file

If we have finished the task of reading content from a file we have to close
it to avoid ugly side effects like content that is still not read due to internal
issues that we cannot easily understand from a programming perspective.
Such negative issues are typically caused by buffering problems or those
caused by several processes reading the same file or writing on it. This
cannot only happen after reading, but also after writing content to files (see
Section 4.8.3).

If the data format is based on comma-separated values (csv) we can also
use a so-called Pandas dataframe to read the content directly into an internal
data structure. This frees us from reading the text file line by line and from
carefully parsing it into corresponding data structure elements like rows and
columns. The csv format reflects tabular data, typically shown to a user by
using some kind of Excel table. Listing 4.54 illustrates how to read tabular
data from a file by making use of a Pandas dataframe.

1 import pandas as pd
2

3 df = pd . read_csv ("C:\\ Users \\Michael \\ c s v f i l e . csv ")

Listing 4.54 Reading tabular data by using a Pandas dataframe

There is even a difference for file reading depending on the fact if we
have to read text or images. Listing 4.55 shows an example for such binary or
image data. Reading regular binary data demands for adding the option letter
"b" for binary to the reading option letter "r."

4.8 Reading and Writing Data 155

1 import imageio as imio
2

3 # Reading the image
4 image = imio . imread ("C:\\ Users \\Michael \\ logo . png")
5

6 b i n f i l e = open ("C:\\ Users \\Michael \\ logo . png" , " rb")
7 t e s t = b i n f i l e . read (10)
8 b i n f i l e . c l o s e ()

Listing 4.55 Reading images or binary data cannot be done by the same procedure as for
reading texts

Exercises

• Exercise 4.8.2.1: Write Python code to read a given text file line by line.
Then count the characters by using the len() function for each string and
sum up all numbers to get the size of the file.

• Exercise 4.8.2.2: Read a given text file character by character and reverse
each word in the text file.

4.8.3 Writing on a file

In some situations it can be useful to know how to write content on a file, for
example in cases in which we used our data visualization tool to explore data
to find patterns or anomalies which typically lets the users filter and aggregate
the data. If we closed now the visualization tool and started it again in a few
days, weeks, or months, our old explorations and insights are lost. This is the
point in which it might be a powerful idea to let users store portions of the
data, typically those that contain the found insights. Apart from the data itself
also parameters might be stored to start the tool at a later point in time in
exactly the configuration we stopped the exploration process. Whatever kind
of storing we do we need to know how to create files and put some kind of
data in a structured way to these files, with the goal to reload them later on
again. Listing 4.56 gives an example about how to write data to a file, a new
one or an existing one, while we can also append data to an existing file, we
do not have to overwrite the content. Writing on a file is initiated by the letter
"w" while appending by the letter "a." Also here we should close the file again
after we have completed all file operations.

156 Coding in Python

1 newFile = open ("C:\\ Users \\Michael \\ t e s t . tx t " , "a")
2 newFile . wr i t e ("Add one more l i n e to the e x i s t i n g f i l e . ")
3 newFile . c l o s e ()
4

5 newFile2 = open ("C:\\ Users \\Michael \\ t e s t . tx t " , "w")
6 newFile2 . wr i t e ("Old content gone , r ep laced by t h i s l i n e . ")
7 newFile2 . c l o s e ()

Listing 4.56 Appending and writing data to a file

When a file does not exist it will be created. In the other case the file
might be overwritten accidentally. The best option is to use the "x" letter
since then an error message will be given if the file already exists to avoid
losing content. After the "x" option has been used the content of the file can
be safely modified.

Exercises

• Exercise 4.8.3.1: Create a new file called myNewFile.txt and put the
numbers from 1 to 1000 on the file.

• Exercise 4.8.3.2: Append the numbers from 2000 to 3000 to the file
myNewFile.txt and output the content by directly reading from the file.

4.8.4 Reading web content

Reading data from a text file or database is important but in some situations
it is good to directly access the data from a web page, for example if the web
page is regularly updating its content. What we need is a mechanism that
more or less automatically connects to the web page by using a URL and gets
the current HTML text. This text can then be further processed, that is, parsed
into a certain data format with which we can create our own real-time dataset.
Listing 4.57 gives an example for this kind of data reading process.

1 from u r l l i b . r eque s t import ur lopen
2

3 page = ur lopen ("http : //www. f u tbo l 24 . com")
4

5 content = page . read ()
6 htmltext = content . decode (" utf -8 ")
7

8 pr in t (htmltext)

Listing 4.57 Reading data from a web page

http://www.futbol24.com

4.9 Object-Oriented Programming 157

Exercises

• Exercise 4.8.4.1: Write code to read the HTML content from the online
version of your favorite newspaper.

• Exercise 4.8.4.2: Write code to fill a list with numeric values by reading
the scores from a web page that provides football tables.

4.9 Object-Oriented Programming

Also in Python we can find the object-oriented programming paradigm. This
means we can model a program with classes that serve as some kind of
template or blueprint from which we can derive objects and instances. Those
objects have a state and a multitude of methods that can modify the state, that
is, the values of corresponding variables or attributes. The objects follow the
principle of encapsulation meaning everything is happening inside an object
created by a class, that is, an object’s state should only be modified by calling
the corresponding methods and not just changing the values immediately.
We can even let the classes inherit from each other, on several inheritance
hierarchy levels and even merge them together which actually destroys the
idea of a hierarchy [212], making it to a general graph structure [18]. Actually,
the inheritance principle brings us to the idea of having parent and child
classes, just like in real life in pedigree trees known from the field of
genealogy [63]. Creating classes in object-oriented programming is a mighty
principle but in some situations, it might not be the best one to find a solution
to a problem by implementing a program. In some situations, it is still good to
use functions and avoid the somewhat more blown-up code in object-oriented
programming.

In this section, we first describe the idea of creating classes, that is,
templates that model which general rules the instances of that class should
follow (Section 4.9.1). The instances of a class must be built in some
well-defined way to allow working with them later on (Section 4.9.2).
Methods are the ways to modify the state of the objects created from classes,
that is, we show how to define such methods and how they can be called
(Section 4.9.3). The division into parent and child classes and the mighty
concept of inheritance is illustrated in Section 4.9.4.

4.9.1 Classes

A class can be regarded as some kind of blueprint that gives us an internal
structure on which each object is based that is created later by using this

158 Coding in Python

specific class. Classes can even be used inside other classes just like a nested
structure. Each class follows some well-defined rules (see Listing 4.58). A
house could be modeled as a class with properties like the number of rooms,
the square meters, the floors, the address, and the like. Moreover, a house
could even have some behavior like being dirty, being empty, getting built,
and the like. A house could also have people living in it, that is, the people
themselves can be a property of the house but the people have properties
as well which can be modeled by another class as well, hence the house
class could include the people class for example. A class does not contain
data or values, it is just a specification which data should be integrated in
the corresponding object later on. With each class we can create as many
instances/objects we need in our program. As a coding convention, class
names are written with an uppercase letter at the beginning to make the
instantiated objects distinguishable later on from standard variables that use
lowercase letters.

1 c l a s s House :
2 toRent = False # c l a s s a t t r i b u t e
3

4 de f __init__(s e l f , rooms , smeters) :
5 s e l f . rooms = rooms # i n s t ance a t t r i b u t e
6 s e l f . smeters = smeters # i n s t ance a t t r i b u t e

Listing 4.58 Creating a class

In Listing 4.58, we see the definition of a House class with a so-called init
function that is used to initialize the later created objects with initial values
for the given parameters, that is, the state of the corresponding object is set.
It may be noted that init can have any number of parameters, however, the
first one is always self which stands for the option to allow new attributes
to be defined for this object. This can be seen in the two code lines right
after the init method, actually setting or assigning the values of the attributes
coming during the creation of the object. They are called instance attributes.
In contrast to instance attributes we can find class attributes that carry the
same value for all instances while the instance attributes are individual values
for each instance of a class.

Exercises

• Exercise 4.9.1.1: Create a class Student that includes typical properties
and behaviors of students.

4.9 Object-Oriented Programming 159

• Exercise 4.9.1.2: Create a class University that includes typical
properties of universities.

4.9.2 Objects and instances

Taking a class as a blueprint and instantiating it to create objects is a powerful
idea since then the static class without included data and values gets to a
dynamic object with data and modifiable values. Each object can have its
own individual values describing its state by the instance attributes. The class
attribute, on the other hand, can be used to describe a fact about each object,
hence it is given by a class attribute. However, also the class variable value
might be changed, it just serves as an initial value when the object is created
to let each object start with the same value for a class attribute. Listing 4.59
shows how an object can be instantiated by just using the previously defined
name of the class (e.g., the one from Listing 4.58) from which we create an
instance. The simplest way to instantiate is by calling the class name with
opening and closing parentheses. The parameters inside the parentheses must
match those ones given in the init method that is used to initialize the values
of the instance attributes, otherwise we will get an error message.

1 House (15 ,337) # s to r ed at a memory address
2

3 myHouse = House (11 , 240) # as s i gned to a va r i ab l e
4 myHouse2 = House (9 ,189) # as s i gned to another va r i ab l e
5

6 myHouse == myHouse2 # r e s u l t s in False

Listing 4.59 Instantiating from a class to get an object

If we create an object as shown in Listing 4.59, we will obtain this object
at a memory address inside the computer which we cannot see. Creating two
or more objects means that they are stored at different memory addresses
which is also the reason why they are not equal although they model exactly
the same objects. If we want to further process the created objects we should
assign them to variables. We can do that since variables (or even constants)
can carry values which are objects as well. The objects assigned to the
variables myHouse and myHouse2 are now real instances from the House
class, each one carrying its own values which come from the initial creation
of each object in which we provided those values inside the parentheses. The
self parameter is not relevant anymore in this construct, it is just used to pass
the values to the instance attributes.

160 Coding in Python

Exercises

• Exercise 4.9.2.1: Write a class Student and create some Student objects.
They should have a name, an age, a list of grades, and a gender.

• Exercise 4.9.2.2: Write a class Car and create some Car objects. Those
objects should be stored in a list.

4.9.3 Methods

Methods are a way to modify the instance attribute values from outside, that
is, after an object has been created we should not modify its state by directly
accessing and changing the values, but instead everything should happen
via methods, a special type of functions that actually belong to instances
of a class. For example, we could directly access the values of the rooms
and smeters instance attribute from the House object myHouse as shown in
Listing 4.60. For class attributes this works in the same style.

1 rooms = myHouse . rooms
2 squareMeters = myHouse . smeters
3

4 i sRentab l e = myHouse . toRent

Listing 4.60 Accessing the values of some instance attributes without using methods

Apart from accessing those values they can even be changed in a similar
way just like assigning values to variables. However, this strategy does not
follow the encapsulation principle, the values should only be accessed and
modified by so-called instance methods. Those methods are also defined and
coded in the body of a class and can be used for each instance of that class
in the same way, just like the instance variables. They also start with the self
parameter as a first one in the parameter list which works in the same way as
for the instance variables (see Listing 4.61). The calling syntax, however, is a
bit different than those from standard Python functions. Methods are always
bound to an object, hence they are called by stating the name of the object
first, followed by a dot, followed by the corresponding method name (see
Listing 4.62).

1 c l a s s House :
2 toRent = False # c l a s s a t t r i b u t e
3

4 de f __init__(s e l f , rooms , smeters) :
5 s e l f . rooms = rooms # i n s t ance a t t r i b u t e
6 s e l f . smeters = smeters # i n s t ance a t t r i b u t e
7

4.9 Object-Oriented Programming 161

8 de f getRoomNumber (s e l f) :
9 re turn s e l f . rooms

10

11 de f getSquarePerRoom (s e l f) :
12 re turn s e l f . smeters / s e l f . rooms

Listing 4.61 Adding methods to a class

1 myHouse = House (8 , 209)
2

3 rooms = myHouse . getRoomNumber ()
4 roomAverage = myHouse . getSquarePerRoom ()

Listing 4.62 Creating an object from a class and calling methods

Exercises

• Exercise 4.9.3.1: Create a class Student, add class and instance
attributes, and complete the class with several methods allowing to get
and set the values of the instance attributes.

• Exercise 4.9.3.2: Add another method to the class that returns the name
of the student in capital letters.

4.9.4 Inheritance

In some real-world scenarios we find objects or persons with similar
properties but they still differ by some other properties. But somehow the
core of each object or person is the same. In such a scenario we wish to
have a strategy that avoids reimplementing the core properties as well as the
functionality all the time. It seems as if the additional properties must be some
kind of new implemented code while the core, that is, the same properties
might be somehow reused from existing code. The principle behind this idea
is called inheritance since it can categorize classes into parent classes and
child classes that get all of the properties and functionality from the parent
classes but they can have more properties and functionality than the parent
classes. This concept forms some kind of hierarchy, however in Python we
can also merge classes, similar to the real-world situation between humans,
but in programming this inheritance concept is even more flexible. Although
the child classes inherit the attributes (properties) and methods (functionality)
from the parent classes they can even use the inherited aspects in a more
specific form while they can also extend their functionality. Listing 4.63
shows examples to create child classes from the parent class House from

162 Coding in Python

before. Those children could be TinyHouse, Hotel, TreeHouse, and so on.
All of them have rooms and a total number of square meters. However, each
of them could have additional properties and functionality, a hotel might have
guests and room prices.

1 c l a s s TinyHouse (House) :
2 pass
3

4 c l a s s Hotel (House) :
5 pass
6

7 c l a s s TreeHouse (House) :
8 pass
9

10 ho t e lC a l i f o r n i a = Hotel (250 ,8346)
11 smallHouse = TinyHouse (1 , 5)
12 natureHouse = TreeHouse (2 , 8)

Listing 4.63 Parent and child classes for using the principle of inheritance

Exercises

• Exercise 4.9.4.1: Define another kind of house that inherits from the
House class.

• Exercise 4.9.4.2: Define another kind of hotel that inherits from the
Hotel class.

5
Dashboard Examples

We can compose a dashboard in various ways, based on one specific
dataset or even more of them in a linked manner focusing on the specific
interests of the data analysts and users and on the tasks they are planning
to solve by means of interactive visualizations. The design of the graphical
user interface and the design of the visualizations equipped with various
interaction techniques [258] play major roles to finally obtain a runnable
and user-friendly tool [127] with which we can explore and analyze
our data-at-hand. In the previous chapters, we described the ingredients
from several perspectives like data (Section 2.1), algorithms (Section 2.2),
visualizations (Section 2.4.1), user interfaces (Section 2.4.3), interactions
(Section 2.5), and the coding ingredients based on the Python programming
language (Section 4). In this chapter, we try to combine all of the previously
learned concepts to create a dashboard for interactive visualizations, allowing
user interventions as some kind of dialogue between users and the provided
user interface as well as the individual visual components in form of
interactive diagrams. The chapter can be studied as a stand-alone chapter
but we also provide references to previously explained concepts to let the
reader step back to unknown concepts and components, however we try to
describe each individual stage in the code for creating one’s own dashboards.
We look at such dashboards from two perspectives, the design as well as the
implementation, that is, if a dashboard is designed as some kind of mockup,
we need to implement the functionality and the visual components and let
them play together which requires some knowledge in Python, Dash, and a
graphics library like Plotly Express or even go for creating graphics objects
in Plotly.

The chapter is structured as follows. In Section 5.1, we introduce a
simple first example of a dashboard for showing a histogram in which a
color parameter can be modified. We extend this dashboard to one that can
show two diagrams, a histogram and a scatter plot while allowing to filter
values with a slider (Section 5.2). Moreover, the concept of bootstrap is used
to define a good layout. Section 5.3 describes a dashboard in which two

163

164 Dashboard Examples

plots can be controlled while also separate tabs are supported. Moreover, we
introduce a simple external CSS file to show how the interface parameters
can be controlled globally to have an additional mechanism apart from the
inline CSS that can become a tedious task when the user interface components
appear in numerous ways and have to be visually enhanced one-by-one.
Also Plotly templates are introduced in this example. In Section 5.4, we
show how to let an interactive diagram be an input option for another plot.
This concept allows to react on user interactions in the visualizations by
interactively modifying other visualizations which shows a first step of the
popular brushing and linking [243] feature in the research field of information
visualization [245]. The callback mechanism can be based on an arbitrary
number of input and output parameters which is also shown in this dashboard
example. As an add-on to the Plotly diagrams we will use go objects as
an alternative to pure Plotly diagrams. An even more complex dashboard
example is explained in Section 5.5 integrating several plots in the user
interface while also supporting tabs to switch between two visual alternatives.
For example, in a scatter plot we can select point clouds that are then shown
in a density heatmap and the categories of the point distribution is also shown
in a color coded bar chart. Even some more input features are implemented
as dash core components.

To run the dashboard codes successfully we recommend to use the
package versions python 3.9, dash 2.11.1, numpy 1.25, pandas 2.0.3,
dash-bootstrap-components 1.4.1, and scikit-learn 1.3.0. The Python codes
can also be found in a GitHub repository https://github.com/BookDas
hboardDesign. In case the readers have questions they can send them to
BookDashboardDesign@gmail.com to get answers or useful hints.

5.1 Modifying the Color in a Diagram

We are starting this section with a very simple example of a dashboard that
is based on randomly generated data. This data is visually explored for its
distribution [213], that is, we are interested in a visualization that shows this
distribution, that allows some basic interactions [222, 258], and as a user
input, the color of the diagram should be modifiable between a few standard
colors [29, 199]. The diagram type that is best suited for such a scenario
showing distributions of a univariate dataset is the so-called histogram. With
that we can put a numeric scale on the x-axis and the number of data elements
falling in each pre-defined interval on the y-axis. Looking at the distributions
can provide insights into the data, not only from a perspective of a statistician

https://www.github.com
mailto:BookDashboardDesign@gmail.com
https://www.github.com

5.1 Modifying the Color in a Diagram 165

who is familiar with these kinds of diagrams. We first start with some kind
of hand-drawn mockup to get a better visual idea of what is expected from
such a dashboard (Section 5.1.1). As a next step we illustrate the Python
code for getting this dashboard running (Section 5.1.2). As a last step, we
describe what we will see and which interactions are possible when letting
the code run, that is, we see our designed and implemented dashboard in
action (Section 5.1.3).

5.1.1 A simple dashboard with a histogram

Before implementing a dashboard, it is a good idea to think about its design,
that is, the design [13] of the user interface with all of its components
but also the design of the incorporated visualization techniques. Moreover,
the layout and the aesthetics [38], that is, visual decoration of all of the
components is of importance. To get an impression about all the components
and their locations in the display as well as possible interaction techniques
and how the components are linked to each other it might be good to draw
the dashboard, in the best case by hand since that allows the highest degree of
flexibility [250] (see Section 2.4). Figure 5.1 gives a visual impression about
the ingredients in the dashboard, however, the interaction techniques must be
described in textual form since it is difficult to illustrate them visually due to
the lack of animation in a book.

Figure 5.1 A hand-drawn mockup of a dashboard for interactively modifying the color of a
histogram (drawn by Sarah Clavadetscher).

166 Dashboard Examples

There should already be some basic interactions [258] in the dashboard
which can be listed as follows:

• Select: A drop-down menu can be used to select a color for the histogram
from a pre-defined list of colors.

• Encode: The modification of the color itself can be regarded as some
kind of visual encoding.

• Zoom: Since we use interactive Plotly diagrams we have a zooming
function already included in the histogram.

• Reconfigure: Even an aggregation of the histogram might be possible in
a Plotly diagram which is also some kind of rearrangement feature.

For creating such a basic dashboard example we just need a few
ingredients like Python (Section 3.1.1 and Chapter 4), Dash (Section 3.1.2),
and Plotly (Section 3.1.3) while we must have our design concept in mind
which we have made visible as a hand-drawn mockup (Figure 5.1).

Exercises

• Exercise 5.1.1.1: Design a dashboard that uses a box plot instead of a
histogram to show the data distribution.

• Exercise 5.1.1.2: Design a dashboard that integrates a value slider to
select options for colors like 0 for red, 1 for green, and 2 for blue.

5.1.2 Coding details

Listing 5.1 shows the coding details to implement the dashboard shown in
Figure 5.1 with the integrated interaction techniques described above. Lines
1 to 4 show the modules that need to be imported, with Dash, the Dash core
and HTML components, Input, Output, and the callback mechanism (Line 1),
followed by Plotly Express (Line 2), numpy (Line 3), and pandas (Line 4).

The modules and their functionality in this dashboard implementation can
be briefly described as follows:

• Dash: This module is required for the web development, that is, making
the dashboard publicly available in a web browser.

• dcc: The dash core components module contains various interactive
elements for integrating in a user interface like drop-down menus,
sliders, date pickers, and many more.

5.1 Modifying the Color in a Diagram 167

• html: The dash HTML components module is useful for HTML
commands to, for example, layout and decorate the dashboard, for
example, by adjusting sizes, colors, and distances.

• Input: The input is needed to handle the elements that go into a callback.
• Output: The output is needed to handle the elements that are returned

from a callback.
• callback: This module is responsible for the communication between the

inputs and outputs.
• plotly.express: The visualizations in form of interactive diagrams are

provided by this graphics module.
• numpy: This library allows to work with complex mathematical

functions to artificially create, transform, or manipulate data. It focuses
on efficient computations.

• pandas as pd: This package is typically used for data reading and parsing
tasks, useful in the data science and machine learning domain.

1 from dash import Dash ,
2 import p l o t l y . expre s s
3 import numpy as np
4 import pandas as pd
5

6

7 app = Dash (__name__)
8

dcc , html , Input , Output , ca l l b a ck
as px

9 # generate random normal d i s t r i b u t e d data
10 # and s t o r e i t in a Pandas DataFrame
11

12 df = pd . DataFrame ({ ’ number ’ :
13 np . random . normal (l o c =0,
14 s c a l e =10,
15 s i z e =1000) })
16

17 app . l ayout = html . Div ([
18 html .H1("Dashboard 1") ,
19 dcc . Dropdown(opt ions =[’ red ’ , ’ green ’ , ’ b lue ’] ,
20 value=’ red ’ ,
21 id=’ c o l o r ’ ,
22 mult i=Fal se) ,
23 dcc . Graph (id="graph")
24])
25

26 @cal lback (
27 Output ("graph" , " f i g u r e ") ,

168 Dashboard Examples

28 Input (" c o l o r " , " value ")
29)
30

31 de f update_graph (dropdown_value_color) :
32

33 f i g = px . histogram (df ,
34 x="number" ,
35 co lor_di sc re te_sequence=
36 [dropdown_value_color])
37 f i g . update_layout ()
38 re turn f i g
39

40 i f __name__ == ’__main__ ’ :
41 app . run_server (debug=True)

Listing 5.1 A dashboard example with a histogram and a modifiable color parameter

The dashboard or app gets actually started in Line 7 with the creation of
a Dash object. Since each visualization needs some kind of data we generate
our own artificial dataset [134] which allows us some flexibility in the dataset
size, structure, and complexity and we are not restricted to a specific dataset
case. In Line 12, the data generation process is illustrated by using a Pandas
DataFrame that consists of random normal distributed data, that is, it is
actually univariate data just mapping a number to each data object while
each object can be represented on a numerical scale. As we already know,
one traditional and prominent diagram for this type of data is the so-called
histogram which we will also use in the dashboard. Lines 17 to 24 illustrate
how the dashboard’s layout can be built. Since our dashboard is similar to a
web page, we can make use of HTML and in particular, the division element
(div) to hierarchically structure the web page. We can see some components,
the first one given in Line 18 as a title of the dashboard in H1 font size. Lines
19 to 22 add a drop-down menu for the three color options as a dash core
component with some additional properties. In Line 23 we also add a graph
as a dash core component which can actually be any diagram but we already
decided to integrate a histogram for the univariate data.

The callback mechanism is coded in Lines 26 to 29. We see that it is
composed of inputs and outputs, in this simple dashboard we only allow one
input (a drop-down menu) and one output (a diagram which is a histogram
in this special case). The following function that is responsible for updating
the dashboard and which corresponds to the callback mechanism is located
right below the callback (Lines 31 to 38) and must have the same signature as
the callback itself, otherwise it runs into compilation errors, or even semantic

5.1 Modifying the Color in a Diagram 169

errors in case the input and output types are the same but the values are mixed
in some way. The update function can be named as the developer likes but it
may be noted that in case we have many callbacks and many such update
functions they should have different, that is, unique names. In the update
function in this example we see an input parameter which gives the color
value that is modifiable in the drop-down menu (Line 31) as well as one
return parameter which is the updated figure, in this case a histogram (Line
38). The histogram itself gets the artificial dataset as a dataframe (Line 33),
an attribute named number (Line 34), and a color coding (Lines 35 and 36).
In Lines 40 and 41 the dashboard is started on a server, which is in its current
implementation the localhost.

Exercises

• Exercise 5.1.2.1: Implement a dashboard that shows a box plot for which
we can interactively manipulate the color by using a drop-down menu.

• Exercise 5.1.2.2: Implement a dashboard that uses a slider instead of a
drop-down menu to select the colors with options like 0 = red, 1 = green,
and 2 = blue.

5.1.3 Dashboard in action

Executing the code from Listing 5.1 will return a URL that we can click on or
copy into one of our available web browsers. Since a dashboard is some kind
of web page we can work with it in any newer web browser. It may be noted
that an implemented dashboard should be tested on several web browsers first
before making it accessible to the public. This test avoids the effect that some
people in the world might see a strange layout or a reduced functionality
which is not caused by the code itself but just by the fact that the browser
version or browser itself is not suitable. Hence, after such a test we should
state which web browsers in which versions are supported. Anyhow, if we
have a look at our first implemented dashboard in a suitable web browser we
should get the visual result in Figure 5.2.

We see that there are just two components in the dashboard (as we
desired), a drop-down menu and a histogram showing the distribution of a
univariate randomly generated dataset. Admittedly, the dashboard is not very
aesthetically appealing but it contains the desired functionality. We can find
a drop-down menu for selecting a color, negatively the drop-down menu is
horizontally stretched although the text entries for the color names are only

170 Dashboard Examples

Figure 5.2 After executing the dashboard code we get this graphical user interface (dash-
board) with a drop-down menu and a blue colored histogram.

spanning a few pixels in horizontal direction. This gives room for further
layout improvements and adjustments later on. We can find the same negative
issue in the histogram which is currently horizontally stretched. In the next
implementation iterations, we will incorporate more and more functionality,
but we also look into aesthetic improvements and visual decorations.

Exercises

• Exercise 5.1.3.1: Check the features provided in the dashboard given
in Figure 5.2. How would you add more options for colors in the
dashboard?

• Exercise 5.1.3.2: For the dashboard in Figure 5.2, we could also integrate
other diagram types apart from a histogram. Which ones do you consider
useful for the same dataset and how do you integrate them in the
dashboard?

5.2 Two Diagrams, Bootstrap, and Value Filter

We extend the dashboard from Section 5.1 by adding one more input option
as well as one more diagram. Moreover, we introduce bootstrap as a way to

5.2 Two Diagrams, Bootstrap, and Value Filter 171

allow more flexibility for the layout of the dashboard. The input options are
a drop-down menu and a slider with which a numeric value can be selected
that has an impact on one or several diagrams showing data in a visual way.
A histogram is useful for univariate data, that is, data which is just measured
under one attribute. A scatter plot, on the other hand, can be used to show
correlations between two chosen attributes, that is, bivariate data. Each data
element is measured under two, typically numeric, attributes which allows
some kind of spatial representations for each of the two-dimensional data
points. The distribution of the points in the two-dimensional plane can be
visually explored for patterns, for example positive or negative correlations.
However, a static scatter plot will only tell us half of the truth, hence it is
a good idea to allow interactions like filtering for a certain numeric value.
The section is organized as follows: In Section 5.2.1, we introduce our design
idea coming as a hand-drawn mockup with descriptions about the individual
components and interaction techniques. Then in Section 5.2.2, we explain the
code to implement such a dashboard while finally, we show the result of the
running code as a screenshot (Section 5.2.3).

5.2.1 Extension with a scatter plot and slider

The next level of dashboard implementation can be reached by allowing more
than one input and more than one output. In this example we are going to
integrate a drop-down menu for selecting one category, that is, one color from
a repertoire of given colors. Moreover, we would like to provide a slider with
which we can select a value from a numeric value scale. The selected value
in the drop-down menu should have an impact on the histogram while the
selected numeric value in the slider should have an impact on the scatter
plot. These two types of inputs should be applied independently by the users,
hence we need to split the callback mechanism into two callbacks with two
separate update functions. Since we have four components now, two inputs
and two outputs, we can already get a more complex layout for our dashboard
interface. We would like to have the inputs in the top row and the outputs in
the form of diagrams in the bottom row, but each input–output horizontally
aligned (see the mockup in Figure 5.3).

In addition to the previous dashboard, the users should also be able to
interact with the user interface but also with the two diagrams as explained in
the following:

172 Dashboard Examples

Figure 5.3 A mockup of a dashboard with a drop-down menu and a slider for manipulating
the color of a histogram and for filtering a scatter plot (drawn by Sarah Clavadetscher).

• Numeric filter: A slider can be used to select a value in a given range.
The selected value can be used as a filter to reduce the number of data
elements in the scatter plot.

• Geometric zoom: Since we use Plotly diagrams a geometric zooming
function is supported in the scatter plot as well.

• Undo: The zooming interaction can be made undone by double clicking
in the plot.

We can implement this extended dashboard by using the dashboard
example from before and by just adding the new functionality and features
at the right place (see Section 5.2.2).

Exercises

• Exercise 5.2.1.1: Design a dashboard that integrates a range slider
instead of a regular slider for the scatter plot.

• Exercise 5.2.1.2: Design a dashboard that shows the scatter plot on the
left-hand side and the histogram on the right-hand side. Moreover the
inputs in form of a drop-down menu and a slider should be placed below
the diagrams and not above them.

5.2.2 Coding details

Listing 5.2 shows the code for the extended dashboard. The imports are quite
similar to the previous dashboard but we have two more modules imported
that can be listed as follows:

5.2 Two Diagrams, Bootstrap, and Value Filter 173

• math: This module is needed for mathematical functions like ceil, floor,
factorial, comb, and many more.

• dash_bootstrap_components: This library consists of so-called bootstrap
components with the purpose of styling dashboards and apps, that is,
with a focus on user interface layouts for example.

1 import math
2 from dash import Dash , dcc , html , Input , Output
3 import p l o t l y . expre s s as px
4 import numpy as np
5 import pandas as pd
6 import dash_bootstrap_components as dbc
7

8 app = Dash (__name__,
9 ex t e rna l_s ty l e s h e e t s =[dbc . themes .BOOTSTRAP])

10

11 # generate random normal d i s t r i b u t e d data f o r x and y
12 # and s t o r e i t in a pandas DataFrame
13

14 df = pd . DataFrame ({ ’ y ’ :
15

16

17 ’ x ’ :
18

19

20

21 app . l ayout = html . Div ([
22 html .H1("Dashboard
23

24 dbc .Row([

np . random . normal (l o c =0,
s c a l e =10,
s i z e =1000) ,

np . random . normal (l o c =10,
s c a l e =2,

s i z e =1000) })

2") ,

25 dbc . Col ([dcc . Dropdown(opt ions =[’ red ’ ,
26 ’ green ’ ,
27 ’ b lue ’] ,
28 value=’ red ’ ,
29 id=’ c o l o r ’ ,
30 mult i=Fal se)] , width=6) ,
31 dbc . Col ([dcc . S l i d e r (min=math . f l o o r (df [’ y ’] . min ()) ,
32 max=math . c e i l (df [’ y ’] . max()) ,
33 id="min_value")
34] , width=6)
35]) ,
36

37 dbc .Row([
38 dbc . Col ([
39 dcc . Graph (id="graph_1")

174 Dashboard Examples

40] , width=6) ,
41

42 dbc . Col ([
43 dcc . Graph (id="graph_2")
44] , width=6)
45])
46

47] , className="m-4 ")
48

49

50 @app . ca l l b a ck (
51 Output ("graph_1" , " f i g u r e ") ,
52 Input (" c o l o r " , " value ")
53)
54 de f update_graph_1 (dropdown_value_color) :
55

56 f i g = px . histogram (df ,
57 x="y" ,
58 co lor_di sc re te_sequence=
59 [dropdown_value_color])
60 f i g . update_layout ()
61 re turn f i g
62

63

64 @app . ca l l b a ck (
65 Output ("graph_2" , " f i g u r e ") ,
66 Input ("min_value" , " value ")
67)
68 de f update_graph_2 (min_value) :
69 d f f = df [df [’ y ’]> min_value]
70 f i g = px . s c a t t e r (d f f , x=’x ’ , y=’y ’)
71 f i g . update_layout ()
72 re turn f i g
73

74 i f __name__ == ’__main__ ’ :
75 app . run_server (debug=True , port =8000)

Listing 5.2 Including a histogram and a scatter plot in a dashboard with additional bootstrap
for the layout

After all imports have been made the rest of the code describes the
functionality and features of the dashboard. Lines 8 and 9 initialize the
dashboard and include the bootstrap to improve the layout of the user
interface. The data is artificially generated in Lines 14 to 19 as a Pandas
DataFrame with 2 attributes called ’x’ and ’y’. The data has the additional
property that it is normally distributed in both data dimensions. The layout

5.2 Two Diagrams, Bootstrap, and Value Filter 175

of the dashboard is created in Lines 21 to 47 making use of the bootstrap by
allowing two rows, each having 2 columns, resulting in a 2 times 2 grid layout
(see Figure 5.4). The first row includes the inputs in form of a drop-down
menu and a slider while the second row includes the two Plotly diagrams in
form of a histogram and a scatter plot which is actually not further specified
here, just the type is given which is some kind of graph. The drop-down menu
works similarly as in the previous dashboard example while the slider ranges
between a minimum and a maximum value for which the math functions
are needed for value rounding purposes. Both inputs get unique identifiers
which are important for the callback mechanism at a later point in time.
Those identifiers are ’color’ and ’min_value’ respectively. The graphs also
get identifiers just called ’graph_1’ and ’graph_2’. All components are set to
a fixed width of 6.

Figure 5.4 A grid layout may consist of a number of rows and columns, like 2 of them as
in this case.

In this example we have two callback mechanisms which is a different
strategy compared to the previous dashboard example with only one callback.
The first callback can be found in Lines 50 to 53, followed by the
corresponding update function in Lines 54 to 61. This first callback is
responsible for updating the histogram, that is, it gets a color value from
the drop-down menu as input and outputs the corresponding histogram.
The detailed instructions for this update are shown in the function called
’update_graph_1’ in Lines 54 to 61. The second callback can be found in
Lines 64 to 67, followed by the corresponding update function in Lines 68 to
72. Here the callback gets a value from the slider and outputs a corresponding
updated scatter plot with the filtered values. The details for this update

176 Dashboard Examples

function are given in Lines 68 to 72 in the ’update_graph_2’ function. The
value filter is also implemented in this update function given in Line 69. The
rest of the program was already described in the previous dashboard example
with the extension that the port 8000 is used.

Exercises

• Exercise 5.2.2.1: Modify the dashboard code in a way that the scatter
plot can be filtered with a range slider allowing an interval of numeric
values.

• Exercise 5.2.2.2: Change the input–output mechanism: The scatter plot
should allow to modify its color by a drop-down menu and the histogram
should be filtered for value intervals, on the x-axis but also on the y-axis.

Figure 5.5 The extended dashboard will show a few more features than the one given in
Section 5.1.1. Now, we can see a slider and a scatter plot as well. Moreover, we also have to
care for a good layout of the components although we just have 4 of them at the moment.

5.2.3 Dashboard in action

Figure 5.5 shows the result when executing the dashboard code given in
Listing 5.2. We see the title Dashboard 2 which was generated by an HTML
H1 component. Then, the layout is split into 2 rows and 2 columns (see
Figure 5.4), that is, some kind of grid layout with the inputs in the first row.
On the left-hand side the drop-down menu is located for the color selection
while on the right-hand side, we see the slider for the numeric filter. The
bottom row consists of the histogram in a selected color on the left-hand side
while the right-hand side is reserved for the scatter plot which is currently
filtered for the selected numeric value in the slider input. Although the layout
is already a bit more complex than in the previous dashboard example it is
still not very flexible. There are various options to improve the layout, make
it more dynamic and flexible, and even interactively modifiable.

5.3 Dashboard with Tabs, CSS, and Plotly Template 177

Exercises

• Exercise 5.2.3.1: Modify the scatter plot in the dashboard to let it also
visually encode data in the size and shape of the points.

• Exercise 5.2.3.2: Modify the scatter plot in the dashboard to let it
use intervals for the numeric values instead of discrete numbers. Each
interval should be visually encoded as a point size and/or a point shape.

5.3 Dashboard with Tabs, CSS, and Plotly Template

We further extend the previous dashboard by the concept of tabs, that is,
allowing each diagram to be active and in focus separately, if the users
selected/activated it. If a tab is activated, the corresponding diagram and
functionality can be worked with. To achieve a better and more maintainable
layout and even more aesthetic features for each dashboard component we
include the concept of CSS, but this time not in the traditional inline variant,
this time we use a global CSS file with which all components of a certain kind
can be visually enhanced, decorated, and augmented globally. CSS provides
some kind of linear hierarchy in external, internal, and inline CSS, hence
the cascading concept that allows to override global features with more local
ones, making the styling process easier and more flexible. Even more, we
introduce the concept of Plotly templates supporting special Plotly themes
to graphically style the diagrams based on a common visual appearance.
The section is organized in the following way: In Section 5.3.1, we describe
the design idea with a hand-drawn mockup again as well as explanations
of the individual components and interaction techniques. This is followed
by Section 5.3.2 explaining the individual code parts and lines to give the
programmer a starting point for creating own dashboards in this style. Finally,
we show a screenshot of the running dashboard in Section 5.3.3 and explain
the visual features.

5.3.1 Histogram and scatter plot separately

Sometimes it is a good idea to keep the functionality, features, and diagrams
in a separate tab, to create functionality groups that reduce the cognitive effort
for the users when finding individual features to solve a certain task. The
users can switch between those groups to allow a more structured exploration
strategy. This means one region in a dashboard might be given a specific
focus indicating that only the functions and visualizations in this region are

178 Dashboard Examples

active at the moment on users’ demands, that is, users’ current workspace is
exactly there while the other features and functionalities are still reachable in
a quick way, just by clicking on one of the other provided tabs. Such a concept
will be illustrated in the dashboard in this section while from a visualization
perspective we will focus again on simple visualization techniques like a
histogram and a scatter plot. The readers can create now their own visual
features and exchange the existing ones with their own ones. The histogram’s
color can still be modified by using a drop-down menu with colors while
the scatter plot values can be filtered by a slider. The functionality is clearly
separated, that is, the drop-down menu belongs to the histogram and the
slider belongs to the scatter plot. Figure 5.6 illustrates how such a dashboard
can be imagined before we can implement its functionality in form of user
interface components, diagrams, and interactions. We also integrate CSS
as a concept to globally guide the appearance and layout of the individual
components. The Plotly diagrams can now be based on a certain template
as well, for example to let all of them look consistently, this idea might be
regarded as a similar idea to CSS while with CSS we actually guide and
equip the user interface components with additional features, not primarily
the visualizations and diagrams.

Figure 5.6 A hand-drawn mockup of a dashboard for displaying data in a histogram and
a scatter plot while both diagrams and their inputs can be given a specific focus by a tab
mechanism (drawn by Sarah Clavadetscher).

5.3 Dashboard with Tabs, CSS, and Plotly Template 179

From the interaction perspective, we focus now on additional ways to
create a dialog between our users and the dashboard’s user interface and
visualization components. Also, special features related to those interactions
can be found:

• Separate interactivity: Instead of allowing all components to be
interactive we can even specifically set a component or region in a
dashboard to be active, that is, to be able to accept interactions from
the user side. One idea is to use the concept of tabs.

• Setting Focus: When starting interacting with a component we can
explicitly set the focus to this component by using tabs which
lets organize the features and functionality into active and inactive
components allowing some kind of structured exploration strategy.

• Highlighting: The component or even visualization in focus can be
highlighted to show the users which component is actually active and
which ones are not active at the moment.

• Graying out: The counterpart of highlighting might be the graying out
of a component or several of them. Graying out means it is inactive at
the moment but it is still partially visible for an overview or even for
contextual information.

After the design phase we can start implementing this kind of dashboard
with the given visualizations, user interface components, as well as
interaction techniques and interaction-related aspects. The implementation
details can be read in Section 5.3.2.

Exercises

• Exercise 5.3.1.1: Design a dashboard that contains four tabs with four
diagrams and corresponding interaction options like a drop-down menu,
a slider, a text field, and a date picker.

• Exercise 5.3.1.2: Which kinds of features might be important to
dynamically adapt in a dashboard, that is, on users’ demands?
Discuss!

5.3.2 Coding details

Listing 5.3 shows the external CSS file for the dashboard. We can see
that there are three subsections including the header, the content, and the
tab_content. The first part sets the margins in the header, that is, in all four
orientations top, bottom, right, and left. Top is set to 0 px while all others are

180 Dashboard Examples

set to 25 px. The margins are also set for the content (second part) in the same
manner while the third part just sets the margin to the top to 60 px which is
the tab content. Actually, in the CSS file, we can define nearly any kind of
additional property a certain user interface component should have, not only
the margins but also colors, font sizes, border sizes, backgrounds, and many
more.

1 . header {
2 margin : 0px 25px 25px 25px ;
3 /* margin - top margin - r i g h t margin -
4 }
5

6 . content {
7 margin : 0px 25px 25px 25px ;
8 }
9

10 . tab_content {
11 margin - top : 60px ;
12 }

bottom margin - l e f t */

Listing 5.3 A CSS file for improving the layout and aesthetics of the user interface of the
dashboard

Listing 5.4 illustrates the code for the dashboard shown in the hand-drawn
mockup in Figure 5.6. The imported modules are already familiar from the
previous dashboard examples, consequently we will directly jump into the
Python code.

1 import math
2

3 from dash import Dash , dcc , html , Input , Output
4 import p l o t l y . expre s s as px
5 import numpy as np
6 import pandas as pd
7 import dash_bootstrap_components as dbc
8

9 # new : Tabs f o r a be t t e r overview
10

11 # new : ex t e rna l CSS -> main . c s s
12 # (nothing must be changed in the code
13 # i f c s s f i l e in f o l d e r ’ a s s e t s ’
14

15 # new : p l o t l y template="plot ly_white "
16 # https : // p l o t l y . com/python/ templates /

https://www.plotly.com

17

18 app = Dash (__name__,
19 ex t e rna l_s ty l e s h e e t s =[dbc . themes .BOOTSTRAP])
20

21 # generate random normal d i s t r i b u t e d data
22 # f o r x and y and s t o r e i t in a pandas DataFrame
23

24 df = pd . DataFrame ({ ’ y ’ : np . random . normal (l o c =0,
25 s c a l e =10,
26 s i z e =1000) ,
27 ’ x ’ : np . random . normal (l o c =10,
28 s c a l e =2,
29 s i z e =1000) })
30

31 app . l ayout = html . Div ([
32 html . Div (
33 [html .H1("Dashboard 3")] ,
34 className="header ") ,
35 html . Div ([
36 dcc . Tabs (id=" tabs " ,
37 ch i l d r en =[
38 dcc . Tab(l a b e l= ’Tab One ’ ,
39 id="tab_1_graphs" ,
40 ch i l d r en =[
41 html . Div ([
42 dbc .Row([
43 dbc . Col ([dcc . Dropdown(
44 opt ions =[’ red ’ ,
45 ’ green ’ ,
46 ’ b lue ’] ,
47 value=’ red ’ ,
48 id=’ c o l o r ’ ,
49 mult i=Fal se)] ,
50 width=6) ,
51 dbc . Col ([dcc . S l i d e r (
52 min=math . f l o o r (
53 df [’ y ’] . min ()) ,
54 max=math . c e i l (
55 df [’ y ’] . max()) ,
56 id="min_value")] ,
57 width=6)
58]) ,
59 dbc .Row([
60 dbc . Col ([
61 dcc . Graph (id="graph_1")] ,
62 width=6) ,

5.3 Dashboard with Tabs, CSS, and Plotly Template 181

65

70

75

80

85

90

95

100

182 Dashboard Examples

63 dbc . Col ([
64 dcc . Graph (id="graph_2")] ,

width=6)
66])
67] , className="tab_content ") ,
68]) ,
69 dcc . Tab(l a b e l=’Tab Two ’ ,

id="tab_2_graphs" , ch i l d r en =[
71 html . Div ([] ,
72 className="tab_content")
73]) ,
74])

] , className=" content ")
76])
77

78 @app . ca l l b a ck (
79 Output ("graph_1" , " f i g u r e ") ,

Input (" c o l o r " , " value ")
81)
82 de f update_graph_1 (dropdown_value_color) :
83 f i g = px . histogram (df ,
84 x="y" ,

co lor_di sc re te_sequence =[
dropdown_value_color])

86 f i g . update_layout (template=" plot ly_white ")
87 re turn f i g
88

89 @app . ca l l b a ck (
Output ("graph_2" , " f i g u r e ") ,

91 Input ("min_value" , " value ")
92)
93 de f update_graph_2 (min_value) :
94 i f min_value :

d f f = df [df [’ y ’] > min_value]
96 e l s e :
97 d f f = df
98 f i g = px . s c a t t e r (d f f , x=’x ’ , y=’y ’)
99 f i g . update_layout (template=" plot ly_white ")

re turn f i g
101

102 i f __name__ == ’__main__ ’ :
103 app . run_server (debug=True , port =8000)

Listing 5.4 A dashboard using tabs and CSS as well as a Plotly template

5.3 Dashboard with Tabs, CSS, and Plotly Template 183

The code for this dashboard is a bit more complex than the codes for the
two dashboards before. This is due to the fact that we included more features
and concepts, with CSS, tabs, and Plotly templates among them. In Lines 18
and 19, we initialize the dashboard by including external stylesheets with the
bootstrap mechanism. Lines 24 to 29 are responsible for generating artificial
data based on a random normal distribution. In cases we need other artificial
data or real-life data, this is the place in the code how to put any kind of data
into a Pandas dataframe.

With Line 31, we begin setting the layout of the dashboard by using the
HTML division element again. This div element is split into two subelements
allowing to split the display area for our dashboard (typically the computer
monitor) into two actually equally-sized subregions that we can fill with
components separately. The first subregion in Lines 32 to 34 is just creating
some kind of title for the dashboard followed by the CSS styles coming
from the main.css file given in Listing 5.3 by using the className variable
set to "header." The header information can be found in the CSS file in the
corresponding section. The next subregion is introduced in Line 35 with the
next div element. This time the subregion looks a bit more complex starting
with the dash core component Tabs given the id "tabs." This component can
have as many children as we like, in our case just two, representing the two
tabs we are planning to integrate. Each tab itself can be added as a core
component (dcc) starting with tab one in Line 38 giving it a label and an
id again, to later reference and access it with our callback mechanism. Also
the tab itself can be suborganized by again using the HTML div component.
Now the bootstrap comes into play organizing the dashboard’s user interface
into rows and columns including the drop-down menu and the slider in the
first row and the two diagrams in the second row (Lines 42 to 67). It may
be noted that the drop-down (Lines 43 to 49) can be decorated on designers’
demands as well as the slider (Lines 51 to 56). The CSS styles are based on
the tab_content section from the main CSS file in Listing 5.3. The second tab
(Lines 69 to 74) is just shown for illustrative purposes, at the moment there is
not much functionality, but in the next dashboard we will also fill this tab with
more functionality. The entire style of this dashboard component is based on
the style given by the "content" section of the CSS file (Line 75).

In this dashboard we can find two callbacks, one for the dialogue between
the histogram and the user via a drop-down menu and one for the user
dialogue via a slider with the scatter plot. The first callback starts in Line
78 and defines one input value for the color selection and one output value
for the corresponding figure which is a histogram in this special case (Lines

184 Dashboard Examples

78 to 81). The update function for this callback can be seen in the following
code lines (Lines 82 to 87). We see that a histogram is created with Plotly
with the data as a Pandas dataframe and further parameters. In Line 86 we
additionally find the template information given as "plotly_white." Finally,
the created figure is returned. The second callback starts in Line 89 with
an input value for the filter and a corresponding figure (a scatter plot) as
return value. The corresponding update function describes how this filter
value has to be handled and which impact it has on a created scatter plot
(Lines 93 to 100).

Exercises

• Exercise 5.3.2.1: Implement functionality and features for the second
tab in the dashboard application and test it.

• Exercise 5.3.2.2: Create a dashboard with three tabs instead of two.

5.3.3 Dashboard in action

Figure 5.7 shows the result when executing the code above with the external
CSS in mind. This should be located in a folder called "assets." We can see
that tab one is currently active since it is not grayed out. This means that the
histogram and the scatter plot are visible in this scenario. Currently, the color
red is chosen for the histogram while the scatter plot is not filtered due to the
fact that the slider is turned to the leftmost position. Still, the dashboard is
quite simple but the code already contains some useful features with some
functionality.

Figure 5.7 A dashboard showing two tabs while tab one has the focus at the moment. Two
diagrams are integrated: A histogram (left) and a scatter plot (right).

5.4 Inputs from a Plot and Plotly Go 185

Exercises

• Exercise 5.3.3.1: Create a dashboard with four tabs in which each tab
should be used to switch to a new diagram. You can use the same data
generator as in the dashboards explained before.

• Exercise 5.3.3.2: Modify the external CSS file to also adapt the
background colors of the tabs. Moreover, use a different Plotly template
instead of "plotly_white" to get another visual appearance of the
diagrams.

5.4 Inputs from a Plot and Plotly Go

To go one step further and to also allow inputs from an interactive diagram to
be the output for a different diagram, we will create another dashboard on top
of most of the already existing features and functionality. The relevant feature
from information visualization that comes into play here is called brushing
and linking, meaning a certain subset of visual elements in one diagram can
be selected (and highlighted) and, as a consequence, all of the selected visual
elements will be highlighted in all (visible) diagrams as well. This feature is a
very important one in information visualization since it connects several plots
based on a selection feature. In this extended dashboard, we also look into
another way of using Plotly, this time by means of so-called Plotly go objects,
while go stands for graph objects that are more flexible but also require more
code to implement. In this section we first introduce the dashboard design
by a hand-drawn mockup (see Section 5.4.1). Actually, the user interface of
the dashboard with the required features looks very similar to the already
shown dashboards, but in the background, we have to implement more code
to get the functionality running. The corresponding code can be found in
Section 5.4.2. Finally, we conclude the section by showing the results of the
running code with a dashboard screen shot (Section 5.4.3).

5.4.1 Selecting point clouds for an overview

Figure 5.8 shows a mockup for a dashboard’s graphical user interface that
consists of two visualizations of an artificially generated dataset for trivariate
data. On the one hand, we would like to see the data as a scatter plot for
detecting correlations between the two numerical data attributes and the one
categorical data attribute, on the other hand we wish to see a distribution of
the data split by its categorical information given as the color of the points

186 Dashboard Examples

in a corresponding bar chart. The new idea in this dashboard is based on
supporting the spatial selection of point clouds in the scatter plot while at the
same time updating the selected point cloud and the distribution of points as
a bar chart. This brushing and linking feature is very popular in the field
of information visualization, in most cases for more than one plot as we
demonstrate in this simple dashboard example.

Figure 5.8 A hand-drawn mockup for a user interface of a dashboard with a scatter plot,
allowing to select a point cloud for which we see the point distribution in a linked and color
coded bar chart (drawn by Sarah Clavadetscher).

In this dashboard we support one new interaction technique among the
already existing ones from before. This is defined as brushing and linking in
the field of information visualization:

• Brushing and linking: In cases in which a visualization tool consists
of several visualizations/diagrams showing views and perspectives on
the same dataset, we can interactively connect/link those visualizations.
This means in particular that a selection of data elements in one view has
an impact on all other views in which those data elements are visually
represented as well.

5.4 Inputs from a Plot and Plotly Go 187

Exercises

• Exercise 5.4.1.1: Integrate a fourth color in the drop-down menu. Extend
the dashboard by this new color.

• Exercise 5.4.1.2: Apart from the visual variable color we could also add
the shape of the points in the scatter plot. Extend the dashboard to also
allow colors and shapes, for the drop-down menu, for the scatter plot,
and for the bar chart.

5.4.2 Coding details

In Listing 5.5, we can read the code for the dashboard designed in Figure 5.8.
There are some new concepts integrated like more than one plot in a callback
mechanism, brushing and linking, making one plot the input for another
plot, and the Plotly go objects. To let the code run reliably we need to
import a few modules which we have not imported before in the previously
described dashboards. Moreover, we use the same external CSS file as in the
previous example given in Listing 5.3. Two more modules are required in
this example:

• plotly.graph_objects as go: This module contains a figure scheme
organized in some kind of hierarchy consisting of Plotly classes. With
this concept we can create so-called graph objects which are actually
instances of the Python classes.

• sklearn.datasets: With this package we can use some existing datasets
from different application domains. This means the data is already in
a prepared and well-known data format and several other researchers
might have analyzed the same dataset creating some kind of ground truth
or golden standard.

1 import math
2

3 from dash import Dash , dcc , html , Input , Output
4 import p l o t l y . expre s s as px
5 import p l o t l y . graph_objects as go
6 import numpy as np
7 import pandas as pd
8 import dash_bootstrap_components as dbc
9 from sk l e a rn . da ta s e t s import make_blobs

10

11 # new : more than one p l o t in a ca l l ba ck
12 # new : one p lo t as an input f o r another p lo t
13 # new : p l o t l y go ob j e c t

14

15 app = Dash (__name__,
16 ex t e rna l_s ty l e s h e e t s =[dbc . themes .BOOTSTRAP])
17

18 # generate random normal d i s t r i b u t e d data
19 # f o r x and y and s t o r e i t in a pandas DataFrame
20

21 df = pd . DataFrame ({ ’ y ’ : np . random . normal (l o c =0,
22 s c a l e =10,
23 s i z e =1000) ,
24 ’ x ’ : np . random . normal (l o c =10,
25 s c a l e =2,
26 s i z e =1000) })
27

28 # de f i n e c l u s t e r c o l o r s
29

30 COLORS = { ’ 0 ’ : " red " ,
31 ’ 1 ’ : " blue " ,
32 ’ 2 ’ : " grey "}
33

34 X, y = make_blobs (n_samples=100 ,
35 c en t e r s =3,
36 n_features=2,
37 random_state=0)
38 c lu s t e r_d f = pd . DataFrame (data=X,
39 gcolumns=["X" , "Y"])
40 c lu s t e r_d f [’ c l u s t e r ’] = [s t r (i) f o r i in y]
41

42 app . l ayout = html . Div ([
43 html . Div (
44 [html .H1("Dashboard 4")] ,
45 className="header ") ,
46 html . Div ([
47 dcc . Tabs (id=" tabs " ,
48 ch i l d r en =[
49 dcc . Tab(l a b e l= ’Tab One ’ ,
50 id="tab_1_graphs" , ch i l d r en =[
51 html . Div ([
52 dbc .Row([
53 dbc . Col ([
54 dcc . Dropdown(
55 opt ions =[’ red ’ ,
56 ’ green ’ ,
57 ’ b lue ’] ,
58 value=’ red ’ ,
59 id=’ c o l o r ’ ,

188 Dashboard Examples

60 mult i=Fal se)] ,
61 width=6) ,
62 dbc . Col ([
63 dcc . S l i d e r (min=
64 math . f l o o r (
65 df [’ y ’] . min ()) ,
66 max=math . c e i l (
67 df [’ y ’] . max()) ,
68 id="min_value")
69] , width=6)
70]) ,
71 dbc .Row([
72 dbc . Col ([
73 dcc . Graph (id="graph_1")
74] , width=6) ,
75 dbc . Col ([
76 dcc . Graph (id="graph_2")
77] , width=6)
78])
79] , className="tab_content ") ,
80]) ,
81 dcc . Tab(l a b e l=’Tab Two ’ ,
82 id="tab_2_graphs" ,
83 ch i l d r en =[
84 html . Div ([
85 dbc .Row([
86 dbc . Col ([
87 dcc . Graph (
88 id="graph_3")
89] , width=8) ,
90 dbc . Col ([
91 dcc . Graph (
92 id="graph_4")
93] , width=4)
94])
95] , className="tab_content ")
96]) ,
97])
98] , className=" content ")
99])

100

101 @app . ca l l b a ck (
102 Output ("graph_1" , " f i g u r e ") ,
103 Input (" c o l o r " , " value ")
104)
105 de f update_graph_1 (dropdown_value_color) :

5.4 Inputs from a Plot and Plotly Go 189

106

107 x="y" ,
108 co lor_di sc re te_sequence=
109 [dropdown_value_color])
110 f i g . update_layout (template=" plot ly_white ")
111 re turn f i g
112

113 @app . ca l l b a ck (
114 Output ("graph_2" , " f i g u r e ") ,
115 Input ("min_value" , " value ")
116)
117 de f update_graph_2 (min_value) :
118 i f min_value :
119 d f f = df [df [’ y ’] > min_value]
120 e l s e :
121 d f f = df
122

123 f i g = px . s c a t t e r (d f f , x=’x ’ , y=’y ’)
124 f i g . update_layout (template=" plot ly_white ")
125 re turn f i g
126

127 @app . ca l l b a ck (Output ("graph_3" , " f i g u r e ") ,
128 Output ("graph_4" , " f i g u r e ") ,
129 Input ("graph_3" , " re layoutData ")
130)
131 de f update_graph_3_and_4(se lected_data) :
132 i f se l ected_data i s None or
133 (i s i n s t a n c e (se lected_data , d i c t) and
134 ’ xax i s . range [0] ’ not in se l ected_data) :
135 c l u s t e r_d f f = c lu s t e r_d f
136 e l s e :
137 c l u s t e r_d f f =
138 c lu s t e r_d f [(c lu s t e r_d f [’X ’] >=
139 se l ected_data . get (’ xax i s . range [0] ’)) &
140 (c lu s t e r_d f [’X ’] <=
141 se l ected_data . get (’ xax i s . range [1] ’)) &
142 (c lu s t e r_d f [’Y ’] >=
143 se l ected_data . get (’ yax i s . range [0] ’)) &
144 (c lu s t e r_d f [’Y ’] <=
145 se l ected_data . get (’ yax i s . range [1] ’))]
146

147 f i g 3 = px . s c a t t e r (c lu s t e r_d f f ,
148 x="X" ,
149 y="Y" ,
150 c o l o r=" c l u s t e r " ,
151 color_discrete_map=COLORS,

190 Dashboard Examples

f i g = px . histogram (df ,

5.4 Inputs from a Plot and Plotly Go 191

152 category_orders=
153 {" c l u s t e r " : ["0" , "1" , "2"] } ,
154 he ight =750)
155

156 f i g 3 . update_layout (template=" plot ly_white " ,
157 co lo rax i s_showsca l e=Fal se)
158 f i g 3 . update_traces (marker=d i c t (s i z e =8))
159

160 group_counts =
161 c l u s t e r_d f f [[’ c l u s t e r ’ , ’X ’]] .
162 groupby (’ c l u s t e r ’) . count ()
163

164 f i g 4 = go . Figure (
165 data=[go . Bar (
166 x=group_counts . index ,
167 y=group_counts [’X ’] ,
168 marker_color=
169 [COLORS. get (i) f o r i in group_counts . index]
170)])
171

172 f i g 4 . update_layout (he ight =750 ,
173 template="plot ly_white " ,
174 t i t l e="Counts per c l u s t e r " ,
175 xax i s_ t i t l e=" c l u s t e r " ,
176 t i t l e_ f on t_s i z e= 25
177)
178

179 re turn f i g 3 , f i g 4
180

181 i f __name__ == ’__main__ ’ :
182 app . run_server (debug=True , port =8012)

Listing 5.5 A dashboard with more than one plot in a callback and additionally the Plotly
go object

The major implementation concepts in the code after the imports can be
described as follows. In Line 15, the dashboard is initialized with the external
style sheets from the dash bootstrap components. Lines 21 to 26 generate
an artificial dataset based on a random normal distribution. A constant
named COLORS is defined in Lines 30 to 32 with the colors mapped to
numeric information, for the colors of individual point clusters later on in
the visualization. The following code in Lines 34 to 40 creates clusters of
data.

The layout of the dashboard is built with Line 42 and the next ones, again
based on splitting the display area with the HTML div element. This layout

192 Dashboard Examples

strategy is quite similar to the one in the previous dashboard. There is a tab
one with two rows and two columns (see Figure 5.4). The first row contains
the dash core components for the user input like a drop-down menu and a
slider while row two integrates the two diagrams in form of a scatter plot
and a bar chart. Tab two just contains one row with two columns for two
more diagrams. It may be noted that the widths are arranged differently in the
second tab with an 8-to-4 ratio while in tab one we had an equal 6-to-6 ratio.

There are three callback mechanisms in this dashboard code. The first
one starts in Line 101 having one input as a color value from a drop-down
menu and one output as a figure, that is, a diagram which is a histogram
in this special case as we can see in the corresponding update function
(Lines 105 to 111). Moreover, the figure uses a special update of its layout
based on a template called "plotly_white" which was already described in the
previous dashboard example. The second callback (Lines 113 to 116) with its
corresponding update function (Lines 117 to 125) is responsible for reacting
on the slider input, that is, if the user interactively changes a value by using
the slider, this value is directly passed to the corresponding scatter plot as
desired with a filter function implemented. This filter works on a copy of the
Pandas dataframe (Lines 118 to 121). The filtered data is then given to the
scatter plot while again the template is set to "plotly_white" (Line 124).

The third callback starting in Line 127 with its update function starting in
Line 131 is the most complex one compared to the previous two callbacks,
including some new concepts and features. First of all, we see one input which
stems from a graph called "graph_3" and which is passed to two outputs, that
is, the "graph_3" itself and a different graph called "graph_4." This is the idea
of allowing brushing and linking, meaning the selected data elements in a
diagram can be the input for a different diagram which actually sends data
between diagrams and not just "pure" inputs from dash core components in
the form of sliders, menus, date pickers, and many more. Lines 132 to 145
define the selected data and create a cluster variable "cluster_dff" based on
an original variable "cluster_df." The updated diagram (Lines 147 to 154) is
then based on this filtered data, that is, the selected data elements are actually
color coded by using the defined colors from the COLORS constant in Lines
30 to 32. In Lines 156 to 158, we set the layout of the diagram based on
the template again, and we update the traces. To create the corresponding bar
chart with which the scatter plot is linked we first need to count the number
of selected points together with their category, that is, color. This is done in
Lines 160 to 162 and stored in a variable "group_counts." Lines 164 to 170
create the bar chart by a new concept which is based on the so-called graph

5.4 Inputs from a Plot and Plotly Go 193

objects in Plotly. Those go objects have a different syntax than the pure Plotly
express diagrams as we can see in the code lines. Finally, in Lines 172 to 177,
the layout of the bar chart is updated by setting the height, the template, the
title, the description on the x-axis, and additionally a font size to the value 25.
In Line 179, both diagrams (the scatter plot and the bar chart) are returned
which is inline with the corresponding callback mechanism in Lines 127 to
130 (one input, two outputs).

Exercises

• Exercise 5.4.2.1: The selected data points in the scatter plot should also
be represented in a new scatter plot, only showing the selected points.

• Exercise 5.4.2.2: Reimplement the dashboard to let the selected data
points appear in a highlighted yellow color.

5.4.3 Dashboard in action

In Figure 5.9, we see that tab two is currently selected. In this tab, we get the
scenario of selecting data elements in a scatter plot which are then visualized
in a bar chart by using their categories to group them. Moreover, the color of
the data elements is integrated in both plots as some kind of visual linking or
visual correspondence.

Figure 5.9 Tab two is active in this dashboard showing a scatter plot with color coded data
points and a linked bar chart in which the selected point clouds are visually encoded and
categorized by their colors/categories.

194 Dashboard Examples

Exercises

• Exercise 5.4.3.1: Add a third tab in which we can see the distribution of
the selected data elements from the scatter plot based on their occurrence
on the x- and y-axis.

• Exercise 5.4.3.2: Create a three-dimensional scatter plot and integrate a
point selection mechanism. Discuss the usefulness of three-dimensional
visualizations in information visualization.

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs

In this next dashboard example, we would like to extend the previous ideas
by a separate tab that supports the interactive and visual exploration of
trivariate data by means of a color coded scatter plot. These points are
embedded in the two-dimensional plane with an additional color coding
that visually encodes the third attribute while the other two of the trivariate
data are encoded in the x- and y-axes. The scatter plot allows brushing and
linking and the selected data points are shown in a corresponding bar chart
reflecting the data distribution of the selected point clouds separated in their
color categories. Moreover, we require a third diagram that can display the
density information of the selected point clouds in the scatter plot based
on the powerful concept of heatmaps [30]. As illustrated in this even more
complex dashboard example, the designer and implementor can build more
and more features and functions, linked to each other, structured into feature
and function groups by so-called tabs. However, it may be noted that we
should not create too many of such tabs to avoid an information overflow and
an increase of the cognitive efforts and a steep learning curve for our users.

The section is organized as follows: In Section 5.5.1 we introduce a
hand-drawn mockup showing the major features in this dashboard. We mainly
focus on the visual components and the additional interaction techniques
compared to the previously described dashboards. In Section 5.5.2, we look
into the details of the corresponding Python code and describe the most
important code components to get the dashboard running in its desired form.
In the last part (Section 5.5.3), we show the visual outputs of the code after
we let it run to give the readers an impression about how the dashboard will
look like after executing the code. We recommend the readers of the book to
test the code by themselves, modify it and check the new results. Extending
the code step-by-step might help to understand the dashboard design and
implementation on an experimental basis.

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 195

5.5.1 Scatter plot as a density heatmap

The general idea of this dashboard is to create a visual way to explore the
number of points in a scatter plot. This can be done by selecting point clouds
and inspect their distribution in a bar chart. Although this is a good strategy
we cannot see the spatial distribution of the points in the bar chart anymore.
Hence, an improved solution would be another kind of scatter plot that shows
the density information of the points which is in particular useful in cases in
which many points are plotted on top of each other. But still we need the bar
chart to see the categorical distribution which is given by the color coding
in the scatter plot. The plots should be linked somehow by a brushing and
linking feature, a visualization concept that can also be implemented with
Dash, Plotly, and Python. Figure 5.10 illustrates how such a dashboard might
look like. The reader might think about further extensions of the dashboard,
for example with further diagrams, interactions, and even other datasets from
real-world applications.

Figure 5.10 A hand-drawn mockup of a dashboard with several linked visualizations: A
scatter plot, a bar chart, and a density heatmap to visually explore the spatial distribution of
the points in 2D (drawn by Sarah Clavadetscher).

196 Dashboard Examples

Exercises

• Exercise 5.5.1.1: Design a dashboard with six different visualization
techniques showing the same dataset from six different perspectives.

• Exercise 5.5.1.2: Which interactions are important for such a dashboard
scenario and which of your diagrams should be linked and in
what way?

5.5.2 Coding details

We describe two options to implement such a dashboard, the first one based
on CSS (Listing 5.7) and the second one based on bootstrap (Listing 5.8).
For the CSS version we need an external CSS file which can be found in
Listing 5.6. Before we start discussing both of the code options we take a
closer look into the CSS code and briefly describe its components. The CSS
defines the padding, margin, and box sizing with fixed values (Lines 1 to
5) for example. Nothing is mentioned about the HTML (Lines 7 and 8) in
this specific example. However, the body sets the font family to Lato and
sans-serif and the font weight to 400 while the margins left and right are set
to 15 px respectively (Lines 10 to 15). The container is set to a margin of 0
and a maximum width of 2000 pixels in Lines 17 to 20 while the header title
is fixed to a top margin of 20 pixels and a bottom margin of 10 pixels (Lines
22 to 25). Also the tabl main container gets a few additional settings which
are the display type as grid and the grid template columns are set to lfr (Lines
27 to 30). In the remaining definitions we set the graph to a maximum width
of 100 %, the height to 700 pixels, and the margin top to 15 pixels (Lines 32
to 36). Further definitions for the graph control set the maximum width to 50
%, the margin to 0, and the margin top to 50 pixels (Lines 38 to 42). The main
container for tab two is set to a grid display with grid template columns set to
lfr, a column gap to 20 pixels, a row gap to 10 pixels, and a margin top to 50
pixels (Lines 44 to 50). Graph 3 gets an additional grid column setting to 1/-2,
while graph 5 is set to 1/-1 (Lines 52 to 58). Finally, graph 5 gets an additional
feature for the label and the last child whose margin is set to 20 pixels (Lines
60 to 62). This CSS example should illustrate that there are various options
possible to guide the layout and the appearance of dashboard components.
The reader is recommended to read further details in the corresponding CSS
literature, mentioning all of the CSS features would go beyond the fence of
this book.

1

2 padding : 0px ;
3 margin : 0px ;
4 box - s i z i n g : border - box ;
5 }
6

7 html {
8 }
9

10 body {
11 font - f ami ly : Lato , sans - s e r i f ;
12 font - weight : 400 ;
13 margin - l e f t : 15px ;
14 margin - r i g h t : 15px ;
15 }
16

17 . conta ine r {
18 margin : 0 auto ;
19 max- width : 2000px ;
20 }
21

22 . header - - t i t l e {
23 margin - top : 20px ;
24 margin - bottom : 10px ;
25 }
26

27 . tab1 - - main - c onta ine r {
28 d i sp l ay : g r id ;
29 gr id - template - columns : 1 f r 1 f r ;
30 }
31

32 . graph {
33 max- width : 100%;
34 he ight : 700px ;
35 margin - top : 15px ;
36 }
37

38 . graph - c on t r o l {
39 max- width : 50%;
40 margin : 0 auto ;
41 margin - top : 50px ;
42 }
43

44 . tab2 - - main - c onta ine r {
45 d i sp l ay : g r id ;
46 gr id - template - columns : 1 f r 1 f r 1 f r ;

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 197

*{

198 Dashboard Examples

47 column - gap : 20px ;
48 row - gap : 10px ;
49 margin - top : 50px ;
50 }
51

52 . graph_3 {
53 gr id - column : 1 / - 2 ;
54 }
55

56 . graph_5 {
57 gr id - column : 1 / - 1 ;
58 }
59

60 . graph_5_separated l a b e l : l a s t - c h i l d {
61 margin : 20px
62 }

Listing 5.6 The external CSS file for a dashboard

Listing 5.7 starts again with the import of the relevant modules (Lines 1
to 8). Most of them we have used already in the dashboard examples before.
A new one in the code is:

• helpers: This module allows to import data-related functionality like the
generation of random data, the generation of cluster data, or the update
of selected data.

We define a color constant again in Lines 18 to 20 and use external
stylesheets in Lines 22 to 25 which are included in Lines 28 and 29 when
starting the app. The random data is generated in Line 31 with a seed of value
8 and in Line 32 we create additional clusters. The layout of the dashboard
is then defined starting in Line 34 with the HTML division element again
that creates a header and another division element (Line 37). In this container
we start building tabs (Line 38) with several subtabs organized as children.
In tab 1 (Lines 39 to 69) we find again the HTML div elements to organize
and layout the dash core components which are a dropdown menu (Lines 42
to 51) and a graph which stands for a Plotly diagram (Lines 52 to 54). The
variable className are used to attach the external CSS file features to the
corresponding core components in the dashboard. A second subcomponent of
tab 1 is built by the slider (Lines 57 to 63) and by another graph representing
a Plotly diagram (Lines 64 to 66). As we can see in this example there
are several className variables attached to the used components, always
defining additional layouts and visual properties.

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 199

Tab 2 is coded in Lines 70 to 127 and is much more complex than the
code for the functionality provided by tab 1. Again we split the features and
functions by defining children of the tab environment and we use an HTML
div element on the highest level in the tab (Line 72). Moreover, several other
division elements are used to subcategorize and layout the tab’s content. We
start with two graphs called graph_3 and graph_4 (Lines 73 to 76) followed
by another division element containing even another division element with
a label (Lines 79 to 81) and a drop-down menu (Lines 82 to 89). This is
repeated again with further features (Lines 90 to 105) and again for a label
and a RadioItems component (Lines 108 to 119). The last part builds a graph
component for graph_5 (Lines 120 to 122).

The following lines describe the callbacks starting with one that takes
a color value as input and that outputs a figure identified by graph_1
(Lines 130 to 133). The corresponding update function is placed below this
callback (Lines 135 to 141). It is responsible for updating the histogram
in a certain user-selected color value. The next callback (Lines 143 to
146) takes a min_value as input and outputs a graph_2. The corresponding
update function can be found in Lines 148 to 156. It is responsible for the
filtering of the scatter plot based on the minimum value that is user-selected
by a slider. Then, a more complex callback can be found in Lines 158
to 160 that takes some graph-related input and outputs two other graphs.
The idea in this callback is to allow inputs from a diagram and make its
outputs in other diagrams. The update function is coded in Lines 162 to 202.
Another callback (Lines 204 to 210) takes four values as inputs, 3 numbers
and one graph-related property while it just outputs one new figure. The
corresponding update function can be found below (Lines 212 to 228). The
code is completed with the already known commands in Lines 230 to 231.

1 from dash import Dash , dcc , html , Input , Output
2 import p l o t l y . expre s s as px
3 import p l o t l y . graph_objects as go
4 import math
5 from he l p e r s import generate_random_data ,
6 generate_random_cluster_data ,
7 update_selected_data
8 import dash_bootstrap_components as dbc
9

10 # New: same f u n c t i o n a l i t y l i k e prev ious example
11 # but t h i s time without i n l i n e s t y l e s and without boots t rap
12 # t h i s time much more CSS in main_dashboard4 . c s s
13

14 # New: Exporting data gene ra t i on in own f unc t i on
15

16 # de f i n e c l u s t e r c o l o r s
17

18 COLORS = { ’ 0 ’ : " red " ,
19 ’ 1 ’ : " blue " ,
20 ’ 2 ’ : " grey "}
21

22 ex t e rna l_s ty l e s h e e t s = [
23 " ’ https : // f on t s . g oog l e ap i s . com/ cs s2 ? fami ly=
24 Lato : wght@400;700& d i sp l ay=swap ’ "
25]
26

27 # own . c s s from f o l d e r a s s e t s i n t e g r a t ed
28 app = Dash (__name__,
29 ex t e rna l_s ty l e s h e e t s=ex t e rna l_s ty l e s h e e t s)
30

31 df = generate_random_data (seed=8)
32 c lu s t e r_d f = generate_random_cluster_data ()
33

34 app . l ayout = html . Div ([
35 html . Header ([html .H1("Dashboard 5")] ,
36 className="header - - t i t l e ") ,
37 html . Div ([
38 dcc . Tabs (id=" tabs " , ch i l d r en =[
39 dcc . Tab(l a b e l="Tab1" , ch i l d r en =[
40 html . Div ([
41 html . Div ([
42 dcc . Dropdown(
43 opt ions =[’ red ’ ,
44 ’ green ’ ,
45 ’ b lue ’] ,
46 value=’ red ’ ,
47 id=’ c o l o r ’ ,
48 mult i=False ,
49 className=
50 "graph_1 - - dropdown
51 graph - c on t r o l ") ,
52 dcc . Graph (
53 id="graph_1" ,
54 className="graph_1 graph")
55] , className="graph - component") ,
56 html . Div ([
57 dcc . S l i d e r (
58 min=math . f l o o r (df [’ y ’] . min ()) ,
59 max=math . c e i l (d f [’ y ’] . max()) ,

200 Dashboard Examples

https://www.fonts.googleapis.com

60 id="min_value" ,
61 className=
62 "graph_2 - - s l i d e r
63 graph - c on t r o l ") ,
64 dcc . Graph (
65 id="graph_2" ,
66 className="graph_2 graph")
67] , className="graph - component")
68] , className="tab1 - - main - conta ine r ")
69] , className="tab1") ,
70 dcc . Tab(l a b e l="Tab2" ,
71 ch i l d r en =[
72 html . Div ([
73 html . Div (dcc . Graph (id="graph_3") ,
74 className="graph_3") ,
75 html . Div (dcc . Graph (id="graph_4") ,
76 className="graph_4") ,
77 html . Div (
78 html . Div ([
79 dbc . Label ("Number o f bins : " ,
80 html_for=
81 "graph_5_nbins") ,
82 dcc . Dropdown(
83 opt ions =[s t r (i) f o r i in
84 range (5 , 100 , 5)] ,
85 value=’ 40 ’ ,
86 id=’ graph_5_nbins ’ ,
87 mult i=Fal se)
88]) , className=
89 "graph_5 - - bins - dropdown") ,
90 html . Div (
91 html . Div ([
92 dbc . Label (
93 "Color : " ,
94 html_for="graph_5_color") ,
95 dcc . Dropdown(
96 opt ions =[" V i r i d i s " ,
97 "Magma" ,
98 "Hot" ,
99 "GnBu" ,

100 "Greys"] ,
101 value=’Hot ’ ,
102 id=’ graph_5_color ’ ,
103 mult i=Fal se)
104]) , className=
105 "graph_5 - - co lo r - dropdown") ,

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 201

106

107 html . Div ([
108 dbc . Label (
109 "Separated f o r Clus te r : " ,
110 html_for=
111 "graph_5_separated") ,
112 dcc . RadioItems (
113 opt ions =["Yes" , "No"] ,
114 value=’No ’ ,
115 id=’ graph_5_separated ’ ,
116 className=
117 "graph_5_separated")
118]) , className=
119 "graph_5 - - s eparat ion - rad io ") ,
120 html . Div (
121 dcc . Graph (id="graph_5") ,
122 className="graph_5")
123] , className=
124 "tab2 - - main - conta ine r ")
125] , className="tab2")
126])
127] , className="tabs - content ")
128] , className=" conta ine r ")
129

130 @app . ca l l b a ck (
131 Output ("graph_1" , " f i g u r e ") ,
132 Input (" c o l o r " , " value ")
133)
134

135 de f update_graph_1 (dropdown_value_color) :
136 f i g = px . histogram (df ,
137 x="y" ,
138 co lor_di sc re te_sequence=
139 [dropdown_value_color])
140 f i g . update_layout (template=" plot ly_white ")
141 re turn f i g
142

143 @app . ca l l b a ck (
144 Output ("graph_2" , " f i g u r e ") ,
145 Input ("min_value" , " value ")
146)
147

148 de f update_graph_2 (min_value) :
149 i f min_value :
150 d f f = df [df [’ y ’] > min_value]
151 e l s e :

202 Dashboard Examples

html . Div (

152 d f f = df
153

154 f i g = px . s c a t t e r (d f f , x=’x ’ , y=’y ’)
155 f i g . update_layout (template=" plot ly_white ")
156 re turn f i g
157

158 @app . ca l l b a ck (Output ("graph_3" , " f i g u r e ") ,
159 Output ("graph_4" , " f i g u r e ") ,
160 Input ("graph_3" , " re layoutData "))
161

162 de f update_graph_3_and_4(se lected_data) :
163 PLOT_HEIGHT = 400
164

165 c l u s t e r_d f f = update_selected_data (
166 c lu s t e r_d f=c luster_df ,
167 se l ected_data=se lected_data)
168

169 f i g 3 = px . s c a t t e r (c lu s t e r_d f f ,
170 x="X" ,
171 y="Y" ,
172 c o l o r=" c l u s t e r " ,
173 color_discrete_map=COLORS,
174 category_orders={" c l u s t e r " :
175 ["0" , "1" , "2"] })
176

177 f i g 3 . update_layout (
178 he ight=PLOT_HEIGHT,
179 template="plot ly_white " ,
180 co lo rax i s_showsca l e=Fal se)
181 f i g 3 . update_traces (marker=d i c t (s i z e =8))
182

183 group_counts =
184 c l u s t e r_d f f
185 [[’ c l u s t e r ’ , ’X ’]] . groupby (’ c l u s t e r ’) . count ()
186

187 f i g 4 = go . Figure (
188 data=[go . Bar (
189 x=group_counts . index ,
190 y=group_counts [’X ’] ,
191 marker_color=
192 [COLORS. get (i) f o r i in group_counts . index]
193)])
194

195 f i g 4 . update_layout (he ight=PLOT_HEIGHT,
196 template="plot ly_white " ,
197 t i t l e="Counts per c l u s t e r " ,

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 203

204 Dashboard Examples

198 xax i s_ t i t l e=" c l u s t e r " ,
199 t i t l e_ f on t_s i z e=25
200)
201

202 re turn f i g 3 , f i g 4
203

204 @app . ca l l b a ck (
205 Output ("graph_5" , " f i g u r e ") ,
206 Input ("graph_5_nbins" , " value ") ,
207 Input ("graph_5_color" , " value ") ,
208 Input ("graph_5_separated" , " value ") ,
209 Input ("graph_3" , " re layoutData ") ,
210)
211

212 de f update_graph_5 (nbins , co lo r , separated , se l ected_data) :
213 c l u s t e r_d f f = update_selected_data (
214 c lu s t e r_d f=c luster_df ,
215 se l ected_data=se lected_data)
216

217 f i g = px . density_heatmap (
218 c lu s t e r_d f f ,
219 x="X" ,
220 y="Y" ,
221 nbinsx=in t (nbins) ,
222 nbinsy=in t (nbins) ,
223 co lor_cont inuous_sca le=co lo r ,
224 f a c e t_co l=None i f separated == "No" e l s e " c l u s t e r " ,
225 category_orders={" c l u s t e r " : ["0" , "1" , "2"] }
226)
227 f i g . update_layout (template=" plot ly_white ")
228 re turn f i g
229

230 i f __name__ == ’__main__ ’ :
231 app . run_server (debug=True , port =8014)

Listing 5.7 Example of a dashboard without inline styles and without bootstrap but based
on CSS

Listing 5.8 shows a code example for the same features and functionality
as in Listing 5.7 but this time CSS is not used but instead, we make use of
bootstrap. The imports in Lines 1 to 9 are already familiar to the reader. In
Line 17, we can find the first major difference compared to the code before
which is the integration of the dash bootstrap components. After the data
generation, color settings, and cluster definition (Lines 22 to 46), we code the
layout of the dashboard based on HTML div elements but this time we use the
inline style commands for the margin for example (Line 50). The structure of

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 205

the code is similar to the code example before but this time we make use of
rows and columns based on the dash bootstrap components (starting in Line
59 and ending in Line 149 with the last column). The rest of the code is again
defining callbacks and update functions, similar to the example code before.

1 import math
2

3 from dash import Dash , dcc , html , Input , Output
4 import p l o t l y . expre s s as px
5 import p l o t l y . graph_objects as go
6 import numpy as np
7 import pandas as pd
8 import dash_bootstrap_components as dbc
9 from sk l e a rn . da ta s e t s import make_blobs

10

11 # New: Density heatmap (2 columns) as th i rd p lo t on tab 2
12 # with c o l o r and r e s o l u t i o n opt ions
13

14 # New: Everything with i n l i n e s t y l e and boots t rap (no CSS)
15

16 app = Dash (__name__,
17 ex t e rna l_s ty l e s h e e t s =[dbc . themes .BOOTSTRAP])
18

19 # generate random normal d i s t r i b u t e d data f o r x and y
20 # and s t o r e i t in a Pandas DataFrame (f o r p lo t 1 ,2 , and 5)
21

22 np . random . seed (seed=8)
23

24 df = pd . DataFrame ({ ’ y ’ :
25

26

27 ’ x ’ :
28

29

30

31 # de f i n e c l u s t e r c o l o r s
32

33 COLORS = { ’ 0 ’ : " red " ,
34 ’ 1 ’ : " blue " ,
35 ’ 2 ’ : " grey "}
36

np . random . normal (l o c =0,
s c a l e =10,
s i z e =1000) ,

np . random . normal (l o c =10,
s c a l e =2,
s i z e =1000) })

37 # g ene r i c c l u s t e r data (f o r p lo t 3 and 4)
38

39 X, y = make_blobs (n_samples=7500 ,
40 c en t e r s =3,
41 n_features=2,

42 random_state=0,
43 c lu s t e r_std =0.75)
44

45 c lu s t e r_d f = pd . DataFrame (data=X, columns=["X" , "Y"])
46 c lu s t e r_d f [’ c l u s t e r ’] = [s t r (i) f o r i in y]
47

48 app . l ayout = html . Div ([
49 html . Div ([html .H1("Dashboard 6")] ,
50 s t y l e={ ’ margin ’ : ’ 10px 25px 25px 25px ’ }) ,
51

52 html . Div ([
53 dcc . Tabs (id=" tabs " ,
54 ch i l d r en =[
55 dcc . Tab(
56 l a b e l=’Tab One ’ ,
57 ch i l d r en =[
58 html . Div ([
59 dbc .Row([
60 dbc . Col ([dcc . Dropdown(
61 opt ions =[’ red ’ ,
62 ’ green ’ ,
63 ’ b lue ’] ,
64 value=’ red ’ ,
65 id=’ c o l o r ’ ,
66 mult i=Fal se)
67] , width=6) ,
68 dbc . Col ([
69 dcc . S l i d e r (
70 min=math . f l o o r (
71 df [’ y ’] . min ()) ,
72 max=math . c e i l (
73 df [’ y ’] . max()) ,
74 id="min_value")
75] , width=6)
76]) ,
77 dbc .Row([
78 dbc . Col ([
79 dcc . Graph (id="graph_1")
80] , width=6) ,
81 dbc . Col ([
82 dcc . Graph (id="graph_2")
83] , width=6)
84])
85] , s t y l e={"margin" :
86 "100px 25px 25px 25px"}) ,
87]

206 Dashboard Examples

88

89 dcc . Tab(
90 l a b e l=’Tab Two ’ ,
91 id="tab_2_graphs" ,
92 ch i l d r en =[
93 html . Div ([
94 dbc .Row([
95 dbc . Col ([
96 dcc . Graph (id="graph_3")
97] , width=8) ,
98 dbc . Col ([
99 dcc . Graph (id="graph_4")

100] , width=4)
101]) ,
102 dbc .Row([
103 dbc . Col (html . Div ([
104 dbc . Label (
105 "Number o f bins : " ,
106 html_for=
107 "graph_5_nbins") ,
108 dcc . Dropdown(opt ions=
109 [s t r (i) f o r i in
110 range (5 , 100 , 5)] ,
111 value=’ 40 ’ ,
112 id=’ graph_5_nbins ’ ,
113 mult i=Fal se
114)
115]) , width={" s i z e " : 3} ,) ,
116 dbc . Col (html . Div ([
117 dbc . Label ("Color : " ,
118 html_for=
119 "graph_5_color") ,
120 dcc . Dropdown(
121 opt ions =[" V i r i d i s " ,
122 "Magma" ,
123 "Hot" ,
124 "GnBu" ,
125 "Greys"] ,
126 value=’ V i r i d i s ’ ,
127 id=’ graph_5_color ’ ,
128 mult i=Fal se)
129]) , width={" s i z e " : 3 ,
130 " o f f s e t " : 1} ,) ,
131 dbc . Col (html . Div ([
132 dbc . Label (
133 "Separated

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 207

) ,

134

135 html_for=
136 "graph_5_separated"
137) ,
138 dcc . RadioItems (
139 opt ions =["Yes" ,
140 "No"] ,
141 value=’No ’ ,
142 id=
143 ’ graph_5_separated ’)
144]) , width={" s i z e " : 3 ,
145 " o f f s e t " : 1} ,
146)
147]) ,
148 dbc .Row([
149 dbc . Col ([
150 dcc . Graph (
151 id="graph_5")
152] , width=12)
153])
154] , s t y l e={"margin" :
155 "10px 25px 25px 25px" })
156]) ,
157])
158] , s t y l e={"margin" : "10px 25px 25px 25px"})
159])
160

161 de f update_selected_data (se lected_data) :
162 i f se l ected_data i s None or
163 (i s i n s t a n c e (se lected_data , d i c t) and
164 ’ xax i s . range [0] ’ not in se l ected_data) :
165 c l u s t e r_d f f = c lu s t e r_d f
166 e l s e :
167 c l u s t e r_d f f =
168 c lu s t e r_d f [
169 (c lu s t e r_d f [’X ’] >=
170 se l ected_data . get (’ xax i s . range [0] ’)) &
171 (c lu s t e r_d f [’X ’] <=
172 se l ected_data . get (’ xax i s . range [1] ’)) &
173 (c lu s t e r_d f [’Y ’] >=
174 se l ected_data . get (’ yax i s . range [0] ’)) &
175 (c lu s t e r_d f [’Y ’] <=
176 se l ected_data . get (’ yax i s . range [1] ’))]
177 re turn c l u s t e r_d f f
178

179 @app . ca l l b a ck (

208 Dashboard Examples

f o r Clus te r : " ,

180 Output ("graph_1" , " f i g u r e ") ,
181 Input (" c o l o r " , " value ")
182)
183

184 de f update_graph_1 (dropdown_value_color) :
185 f i g = px . histogram (df ,
186 x="y" ,
187 co lor_di sc re te_sequence=
188 [dropdown_value_color])
189 f i g . update_layout (template=" plot ly_white ")
190 re turn f i g
191

192 @app . ca l l b a ck (
193 Output ("graph_2" , " f i g u r e ") ,
194 Input ("min_value" , " value ")
195)
196 de f update_graph_2 (min_value) :
197

198 i f min_value :
199 d f f = df [df [’ y ’] > min_value]
200 e l s e :
201 d f f = df
202

203 f i g = px . s c a t t e r (d f f , x=’x ’ , y=’y ’)
204 f i g . update_layout (template=" plot ly_white ")
205 re turn f i g
206

207

208 @app . ca l l b a ck (Output ("graph_3" , " f i g u r e ") ,
209 Output ("graph_4" , " f i g u r e ") ,
210 Input ("graph_3" , " re layoutData "))
211 de f update_graph_3_and_4(se lected_data) :
212

213 PLOT_HEIGHT = 400
214

215 c l u s t e r_d f f = update_selected_data (
216 se l ected_data=se lected_data)
217

218 f i g 3 = px . s c a t t e r (c lu s t e r_d f f ,
219 x="X" ,
220 y="Y" ,
221 c o l o r=" c l u s t e r " ,
222 color_discrete_map=COLORS,
223 category_orders=
224 {" c l u s t e r " : ["0" , "1" , "2"] })
225

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 209

226

227 he ight=PLOT_HEIGHT,
228 template="plot ly_white " ,
229 co lo rax i s_showsca l e=Fal se)
230 f i g 3 . update_traces (marker=d i c t (s i z e =8))
231

232 group_counts = c l u s t e r_d f f [
233 [’ c l u s t e r ’ , ’X ’]] . groupby (’ c l u s t e r ’) . count ()
234

235 f i g 4 = go . Figure (
236 data=[go . Bar (
237 x=group_counts . index ,
238 y=group_counts [’X ’] ,
239 marker_color=[
240 COLORS. get (i) f o r i in group_counts . index]
241)])
242

243 f i g 4 . update_layout (he ight=PLOT_HEIGHT,
244 template="plot ly_white " ,
245 t i t l e="Counts per c l u s t e r " ,
246 xax i s_ t i t l e=" c l u s t e r " ,
247 t i t l e_ f on t_s i z e=25
248)
249

250 re turn f i g 3 , f i g 4
251

252 @app . ca l l b a ck (
253 Output ("graph_5" , " f i g u r e ") ,
254 Input ("graph_5_nbins" , " value ") ,
255 Input ("graph_5_color" , " value ") ,
256 Input ("graph_5_separated" , " value ") ,
257 Input ("graph_3" , " re layoutData ") ,
258)
259 de f update_graph_5 (nbins , co lo r , separated , se l ected_data) :
260 c l u s t e r_d f f = update_selected_data (
261 se l ected_data=se lected_data)
262

263 f i g = px . density_heatmap (
264 c lu s t e r_d f f ,
265 x="X" ,
266 y="Y" ,
267 nbinsx=in t (nbins) ,
268 nbinsy=in t (nbins) ,
269 co lor_cont inuous_sca le=co lo r ,
270 f a c e t_co l=None i f separated == "No" e l s e " c l u s t e r " ,
271 category_orders={" c l u s t e r " : ["0" , "1" , "2"] }

210 Dashboard Examples

f i g 3 . update_layout (

5.5 Two Tabs, Three Plots in One Tab, and Several Inputs 211

272)
273 f i g . update_layout (template=" plot ly_white ")
274 re turn f i g
275

276

277 i f __name__ == ’__main__ ’ :
278 app . run_server (debug=True , port =8014)

Listing 5.8 Example of a dashboard with more functionality like tabs and interactive
visualizations as well as the inline style and bootstrap but no CSS

Exercises

• Exercise 5.5.2.1: Add one more row and one more column in the
dashboard code. Do this in both code variants with CSS and bootstrap.

• Exercise 5.5.2.2: Discuss which code variant is better. Take into account
criteria like code understanding, code maintenance, code extension, and
find some more criteria.

5.5.3 Dashboard in action

Figure 5.11 shows a screenshot of the dashboard after executing either the
code example in Listing 5.7 or in Listing 5.8. We can see three partially
overlapping point clusters in the upper left part colored in gray, red, and blue.
The distribution of the selected points is shown in the corresponding bar chart
in the upper right part indicating that the points seem to be equally distributed
in the three categories. The lower part shows the spatial distribution of each
point cloud as a density scatter plot in form of a heatmap-like diagram. The
color coding visually encodes the density value, that is, the denser the point
cloud the brighter the color.

We hope that we could give some useful examples for creating
dashboards. It may be noted that there are lots of variations in the design and
implementation phases. Each designer and developer has his/her own ideas
and concepts in mind, meaning this chapter just served as a starting point
showing some fruitful ideas which build the basis for new dashboards to be
created on.

212 Dashboard Examples

Figure 5.11 Executing the dashboard code and activating tab 2 to interactively explore the
trivariate data in a scatter plot linked to a bar chart and a density heatmap.

Exercises

• Exercise 5.5.3.1: Find your own dataset on the world wide web and
design and implement your own dashboard to visually explore this data.

• Exercise 5.5.3.2: For a user-defined (or selected) mathematical function
f : R −→ R we would like to see the plot of the function as well
as additional information like minima, maxima, gradient function, area
under the function in a certain interval, and many more. Design and
implement a dashboard to support a mathematician at these tasks.

6
Challenges and Limitations

Although a dashboard is a good concept to build an interactive visualization
tool [1, 50, 61, 155] for a multitude of data consisting of various data types
we still find many challenges during the design and implementation, but also
the execution phase. In this chapter we will take a look on several aspects
that bring into play challenges during the design of a dashboard in Python.
To mention a few but important ones we come across several perspectives
like the design, implementation, the execution of the code, and the testing
phase that can be done after the implementation or during it in an iterative
way. As we learned before, the design includes the visual [232] and interface
design [217] but also aspects like aesthetics [38]. The implementation phase
takes into account the software [82], the development environment (IDE),
the developers themselves [53, 54], the operating systems, but also the web
browsers to let the users explore their data with an online version of the
dashboard. In the execution phase we are confronted by aspects including the
data, algorithms, interactions, visual, and perceptual scalability. In the testing
phase we look into typical performance issues with respect to the runtime
performance of the tool with all its algorithms but also the user performance
when giving tasks to solve with the dashboard. The user performance includes
the users themselves but also aspects regarding usability, user-friendliness as
well as user evaluation with and without eye tracking [44, 87, 123].

This chapter is organized as follows: In Section 6.1, we will
discuss the major challenges when designing a user interface as well as
visualization techniques, typically following well-defined rules to focus on
user-friendliness, efficiency, and effectiveness for data exploration tasks.
Implementation challenges can occur in various forms, in particular when
using the programming language Python, Dash, and Plotly. Those are also
based on the operating systems, development environments, but also on web
browsers in cases a dashboard should be run online (Section 6.2). When
using the dashboard, that is, after execution of the implemented source

213

214 Challenges and Limitations

code we can run into problems concerning data, algorithmic, visual, or
perceptual scalability aspects, typically those challenges are detected when
the dashboard is ready to be used, that is, during its runtime (Section 6.3). We
also take a look into performance issues that can come from the software but
also from the users’ perspectives which could be evaluated in controlled or
uncontrolled user studies with and without eye tracking (Section 6.4).

6.1 Design Issues

When creating a dashboard for interactive visualizations [13] we have to
focus on at least two design perspectives. The first one comes from the
graphical user interface (GUI) with all its components like sliders, menus,
buttons, text fields, and so on, presented in a suitable and user-friendly layout.
The second one is based on the visualization techniques with its integrated
interaction features. The visualizations in use depend on the datasets with
their data types on the one hand and the tasks the users have in mind for which
they plan to use the visualization tool to explore and analyze the data. On top
of this we have to deal with a multitude of interaction techniques, in each
individual visualization technique but also connecting two or more of them
in some kind of brushing and linking concept. Apart from just looking at the
standard design rules for the user interface and the visualization techniques
we have to keep in mind that there also exist aesthetic rules that focus on
readability aspects but also on beauty [15, 38]. Those two aspects stand
in some kind of trade-off criterion, that is, the nicer a visualization is the
less readable it becomes, the more readable a visualization is for solving
exploration tasks the less beautiful it is.

In this section, we start our discussion on limitations and challenges
by looking into interface design issues. This can be done by at least two
perspectives, the static components and their layouts but also dynamic
interface features like interactions that are possible with buttons, sliders,
drop-down menus, date pickers, and the like (Section 6.1.1). Moreover, we
continue by taking into account the problems that occur when thinking about
a visual design including the visualization techniques with the interactions
in each individual visualization technique but also in a linked manner
(Section 6.1.2). Visualization tools do not only focus on providing interactive
and readable visualization techniques, they also take into account aesthetics
in the sense of creating a visually attractive and beautiful appearance of both,
the interface and the visualization techniques, however there is some kind of
trade-off between both concepts (Section 6.1.3).

6.1 Design Issues 215

6.1.1 Interface design challenges

One of the first steps when creating a dashboard for an interactive
visualization tool is to think about the required components, where they are
located in the display, which size each individual one will get, if they are
static or dynamically modifiable, or which additional features they will be
equipped with. This task is quite challenging and can come with a multitude
of problems, typically asking the designers to only focus on a limited number
of components and either throw away the others or allow to show them
on users’ demands. What we actually do is to generate a list of possible
component candidates that all have some kind of priority depending on a
certain task to be solved. Hence, the design of the user interface is linked
to the tasks at hand that the final dashboard should support. We should try
to come up with a solution based on a principle including the must haves,
should haves, and could haves, creating a three-stage categorization of all
the features that are required in the dashboard. However, in most situations,
we only concentrate on the most important ones. Hence each dashboard
only provides a limited number of functions that are useful for solving
the tasks.

Designing an interface can be done individually or in a group of team
members, but actually no matter who the designers are, we have to consult
the end users. They are the ones who are our customers and who might buy
our final product. We can create the most impressive dashboard ever with
a multitude of components, functions, features, interactions, visualizations,
and so on, linked together and put into a good layout. However, the users
decide if the created product is really useful and meets their needs. Hence,
also here we need already some kind of user evaluation [152] that uncovers
the bottlenecks, drawbacks, and design flaws on which an improvement phase
should be based. Typical tasks in a user study related to the interface design
focus on the major ingredients like the buttons, sliders, and menus and their
interplay as well as the layout of the GUI to decide whether the locations of
the individual components are well chosen. However, this is already a difficult
problem since the design space with all of its parameters cannot be covered in
one individual user experiment. Many more have to be conducted, each one
varying and checking only a few parameters as independent variables into the
study while the created dataset from the study results can already be quite
large needing another kind of analysis or visualization tool to find insights in
the study data, in particular, if spatiotemporal eye tracking data [44] or verbal
feedback is also recorded as a dependent variable in the study.

216 Challenges and Limitations

Exercises

• Exercise 6.1.1.1: Imagine your dashboard should have 20 user interface
components. How do you decide which of them are the most important
ones and where do you place them in the layout?

• Exercise 6.1.1.2: Which general options do you have to support 20
visualization techniques in a dashboard?

6.1.2 Visual design challenges

The design of the visualization techniques is based on a composition of
visual variables like color, size, position, orientation, texture, and so on. The
biggest challenge here is to decide which ones are appropriate to generate
a visual solution for the tasks at hand. Even if the visual variables seem
to be good candidates there is no guarantee that there are better visual
variable combinations; however, we have already learned some visualization
techniques (Section 2.2.1) that are beneficial for certain data types and
user tasks. Just in case we are planning to design our own visualization
techniques we need to check if those are better candidates than existing ones,
otherwise the users might not be confident with the chosen visualizations,
in particular, if they are visualization experts who know better examples.
In case we have created a new visualization technique we can compare the
usefulness, efficiency, and effectiveness by checking it against a ground-truth
visualization technique in a comparative study, based on performance
measures but also based on user performances in a user experiment with
typical user tasks. However, this evaluation strategy can cost some valuable
time during the design phase, but actually, it is necessary to avoid design flaws
later on that we were not aware of without having asked the users.

The visual design (as already discussed in Section 2.4.1) also focuses on
further more complex principles which are based on the composition of the
visual variables but which also take into account user tasks. Those are chart
junk, the lie factor, as well as visual clutter. Creating a visualization technique
that takes into account all three of them at the same time is a challenging task,
in particular, if line-based diagrams have to be drawn, we mostly run into a
visual clutter problem [202] for larger datasets. In many visual situations, we
should exploit the Gestalt laws [147] to follow a good visual design since they
consist of a rule set with natural aspects related to how we interpret a diagram
as a whole and not as composed of its parts which contradicts somehow the
aforementioned idea of composing visualization techniques by a number of
visual variables. Here, we have to take into account that the composition is

6.1 Design Issues 217

the visual encoding while the Gestalt laws work into the other direction, i.e.
as a visual decoding. As a challenge, we have to find a visual encoding that
is powerful enough to serve as a visual decoding, that is, an interpretation of
the visual patterns to visually explore the encoded data.

Exercises

• Exercise 6.1.2.1: Find diagrams on the web that contain visual design
flaws and discuss how to get rid of them.

• Exercise 6.1.2.2: Discuss whether chart junk, the lie factor, or visual
clutter is bad for a designed diagram.

6.1.3 Aesthetics criteria

Since we design and develop a visualization tool for exploring and
analyzing data, we first look into the aspect of readability of the created
visualizations and the usefulness of the integrated interaction techniques.
This plays the major role and has the highest priority when building such
an interactive tool for data exploration. However, a second, but actually
equally important role is played by aesthetics that makes a visualization tool
attractive to the viewers, that is, aesthetically appealing [38] with a certain
value [237]. The biggest challenge in this area comes from the fact that
both aspects stand in some kind of trade-off behavior, that is, increasing the
readability typically happens at the cost of less aesthetics while increasing
the aesthetics in the sense of making a user interface and the integrated
visualization technique more beautiful comes at the cost of less readability
(see Figure 6.1).

Measuring readability can be done by user performance measures but
measuring aesthetics is a much more difficult problem since each user might
understand aesthetics differently and has a different feeling for aesthetics.
However, there are some general rules to measure aesthetics of a visualization
given by facts that focus on symmetry or certain shapes that might be
liked more than others like curved diagrams which might be preferred
over noncurved diagrams [15]. But still, it is quite challenging to input
a visualization in an aesthetics computing algorithm that comes up with
a value for the degree of aesthetics in the visualization. One idea in this
direction might be a regression problem solved with a neural network that is
trained to compute a percentage value from a given repertoire of visualization
candidates, however the model for such a neural network has to be trained

218 Challenges and Limitations

Figure 6.1 Readability and aesthetics cannot be integrated into a diagram at the same time
to a full extent. There is always some kind of trade-off situation.

on labeled data while the labels come again from an original aesthetics
judgment of viewers, a fact that brings us back to the old problem that
users are required to judge the aesthetics of a visualization before a machine
can do it.

Exercises

• Exercise 6.1.3.1: Which diagrams do you think are nicer: Two-dimen-
sional versus three-dimensional ones, or Cartesian versus radial ones,
colored versus gray-scale ones, static versus animated ones?

• Exercise 6.1.3.2: What makes a diagram look aesthetically appealing?
What makes a graphical user interface look aesthetically appealing?

6.2 Implementation Challenges 219

6.2 Implementation Challenges

After the design phase, we have to start to implement the created dashboard.
This will again bring into play many challenges, but this time related to
programming issues. The design is more flexible since it is based on humans’
creativity while following some well-defined rules. The implementation
phase, on the other hand, shows up as being more restricted due to the
fact that we have to rely on the features that a programming language and
its libraries offer [82]. In some situations the desired functionality might
not be available as an already implemented function, hence we either have
to adjust our design or we need profound knowledge to implement the
desired feature by ourselves. Whatever way we decide to take, there are
various other challenges that come our way, related to the bottlenecks of the
integrated development environment, the underlying operating system, the
internet connection and power of the servers, in case the dashboard has to be
deployed as an online version, or the web browsers that come in a multitude
of forms with different versions. Moreover, the developers themselves play
a crucial role and are a challenge by themselves, typically based on their
experience levels.

In this section, we first look into challenges related to software and
libraries that come across our way (Section 6.2.1). A second stage is
to understand which bottlenecks and drawbacks integrated development
environments can have, avoiding to successfully build a dashboard
(Section 6.2.2). The developers should choose the software, libraries, and
IDEs not only on the dashboard design, but also on their experience levels,
otherwise they might fail in the implementation phase (Section 6.2.3). Also,
the operating systems can mean a problem during the implementation,
in particular, if some developers have different operating systems causing
inconsistencies during the implementation (Section 6.2.4). If we plan to
provide our dashboard as an online visualization tool, we must make it
available online, that is, on a server which typically requires some knowledge
about web-based development (Section 6.2.5). Even if we were successful
in all the aforementioned stages, the dashboard might still have problems
when opening it which might be due to the fact that the web browsers on
the users’ sides have a number of awkward features that let the dashboards
look differently for each user and even some features cannot be executed as
expected (Section 6.2.6).

220 Challenges and Limitations

6.2.1 Software and libraries

The biggest issue when using existing libraries, for example graphics
and visualization libraries, comes from the fact that they only provide a
limited functionality. This has to be understood first to make it applicable
to the problems at hand which turns out to be a challenging task for a
developer. Moreover, it quickly happens that the desired functionality is
not available as a function or method in the library, hence there remain
two options in this case: Either reduce the dashboard by the desired
functionality or implement the functionality by oneself which again requires
more profound knowledge in programming than is needed when just relying
on the functions given by a library. A good example for such library
challenges in the field of visualization is given by the feature of brushing
and linking in multiple coordinated views [200] which requires that two
or more diagrams are interactively connected. In Plotly Express, it is quite
easy to create interactive diagrams based on certain data types, however
linking two or more of them is a tedious task. Actually, the standard
diagrams are not connected to each other, they just work in isolation, each
one separately.

Not only the visualization libraries may cause such problems when
individually developing a dashboard for a specific application. Also other
libraries related to data analytics, for example, popular algorithmic concepts
like clustering, dimensionality reduction [235], or data mining [98] can cause
such negative issues. For example, if we wish to modify an algorithm to
make it applicable to a specific dataset while the algorithm has to take
into account some more parameters than specified in the function given
by the library, we run into the problem of transforming the algorithm,
which turns out to be a challenging task. Moreover, external software could
be a solution, in particular, for data preprocessing but it is questionable
if the external software is able to work with the data format and which
kind of new data is produced. Even more, we cannot easily call an
external software from the dashboard, we have to guarantee that this
software is accessible and puts the preprocessed data to the right place
to make it loadable into the visualization tool. An example would be a
statistics software that is given a table with numeric values and that returns
classical values related to the median, standard deviation, or variance, just to
mention a few.

6.2 Implementation Challenges 221

Exercises

• Exercise 6.2.1.1: Integrate two Plotly diagrams into a dashboard and
connect them. This could be a scatter plot on which an axis interval is
selected while the distribution of the points in the selected interval is
shown as a histogram.

• Exercise 6.2.1.2: Integrate a drop-down menu in a dashboard that lets
you execute external software, for example, a statistics tool.

6.2.2 Integrated development environments (IDEs)

There is a list of integrated development environments (Section 3.2.3) for
implementing Python code for interactive visualization tools and dashboards.
Some of the prominent and oftentimes recommended ones are PyCharm and
Spyder, however, there are some others. Although one IDE might be powerful
and user-friendly for one developer it might be the opposite effect for the
other developer. The rule of thumb is that everybody should work with an
environment that meets one’s needs best in order to efficiently and effectively
create the dashboard. The biggest problem with IDEs is the fact that they
are overloaded with functions and features that it is hard for the newcomer
to immediately understand all the provided functions and features. There
is definitely a learning curve for the newcomers; hence it is recommended
to start with one IDE and try to implement and debug the code with the
provided IDE features, but once the IDE is fully understood, it might be a
good advice to, at least, try another IDE. However, this can be a challenge
since the developer has already created some kind of mental map for the one
IDE, and it is quite difficult, but not impossible, to also learn the functions
and features provided by another IDE.

If the developer is working alone during the dashboard design and
implementation it is actually not a big issue to change the IDE from
time to time. However, if the developer is working in a larger project,
collaborating with other developers it can be challenging to just take the IDE
that one desires. Here, the developer is typically provided an environment
with which all others are familiar to avoid ugly side effects during the
implementation phase. One powerful but also feature-overloaded tool is
GitHub (Section 3.2.4), providing additional functions like a version control
working in a common code repository to see the changes and modifications of
all developers in the code, to archive those changes, and in the worst case, to
rebuild an earlier running version of the code. Those code repositories provide
a wealth of additional tools today, to make software development a successful

222 Challenges and Limitations

and time-efficient endeavor since software development can cost a lot of
money and might include various other cost-intensive resources. Finally, if
we work in a more or less isolated fashion to create a very simple dashboard
for our own purposes, a simple Jupyter Notebook might be the best option
to avoid many of the aforementioned challenges during the implementation
phase.

Exercises

• Exercise 6.2.2.1: Try several IDEs to implement a dashboard. Make a
table of desired features and briefly explain which IDE is best for your
purposes. Which one would you recommend to a newcomer, which one
to a professional Python developer?

• Exercise 6.2.2.2: Start a dashboard project in GitHub and get familiar
with the functions and features there.

6.2.3 Developers and experience levels

In some situations the designed dashboards, we are planning to implement
are already quite complex, meaning the developers need a lot of experience
to integrate all the functionality and visual outputs in the right place. For
this, we need a profound knowledge of Dash, Python, and Plotly with all
its ingredients like Dash core components, Dash HTML components, CSS,
and the callback mechanism. Some developers might have experience in
programming but come from a different programming language than Python,
and hence, they have to adjust to the new situation. However, from the already
taught lectures in programming, visualization, and dashboard design [52] we
know that the learning curve is not that steep, even for nonexperts or even
newcomers in the field. It is a good advice to start with simple dashboards
with just a handful of functions and features and extend such an interactive
tool step-by-step, with an increasing number of functions and also with a
higher complexity level related to the callback mechanisms and the way
the visualizations and algorithmic analyses play together. In particular, the
linking between visualizations can be a challenging programming task for
developers who are nonexperts.

Working in a collaborative way for a larger and more complex project
can bring into play even more challenges since each developer might have a
different level of experience, stemming from another kind of programming
language and programming paradigm. Hence, it is advised to find a suitable

6.2 Implementation Challenges 223

consensus before starting with the implementation in order to make the
interactive visualization tool in form of a dashboard to a success. After the
design phase, the involved developers should discuss the ingredients and
who will take the different roles during the implementation phase. This
strategy can actually be communicated and controlled by using GitHub for
collaborative development. Moreover, version control is helpful to see what
the others did and to step back to an earlier version in case a code iteration
was not as successful as desired. But still, finding a programming consensus
between many developers themselves can be a challenge since not all of them
might be open to adjust to a given or new programming situation.

Exercises

• Exercise 6.2.3.1: Discuss the programming languages you are familiar
with. What are the benefits and drawbacks of those programming
languages?

• Exercise 6.2.3.2: How would you start a collaboration with other
developers in order to create a successful tool based on a more or less
effortless development phase?

6.2.4 Operating systems

Actually, we consider the most popular operating systems here which are
Windows, Linux, and MacOS. Programming in Python works quite smoothly
under all operating systems. But still, there are some negative issues we
should be aware of. Those are, for example, that some libraries might behave
differently on each operating system, hence it is recommended to test the
dashboard not only for the available web browser (Section 6.2.6) but even
under the available operating systems. Otherwise, the divergence issue can
lead to unwanted side effects. Which operating system is best cannot be
answered easily. It depends on the camp of developers. One camp is more
Windows-related, the other one tends to use Linux. Even others, but less,
use MacOS, but still, the recommendation is to not adapt to another operating
system but try to get it running under your operating system, even if you think
that the software might fail or misbehave under other operating systems.

The whole thing might get tricky if the software is implemented in a
collaborative way with various developers, all having different operating
systems on their machines. This problem here could be that the code does
not really work on one machine or the other since the operating system in use

224 Challenges and Limitations

is some kind of mixture of systems. Also, from the installation perspective it
can be harder to get the integrated development environments (IDEs) running
on MacOS, which we learned from our own experiences in various student
courses. However, in the end, we got the IDEs running on each platform,
but to be honest it costed some more time in some situations. When using
several IDEs and several operating systems, the cross-platform effect can
cause serious challenges for the programmer, even more in situations in which
third-party tools or libraries are integrated as well. The more ingredients
we include in this implementation cocktail, the more bottlenecks, we will
typically be confronted with, however, there is always a solution, the only
issue here is that it might be a waste of time to get it running in the end.

Exercises

• Exercise 6.2.4.1: Make a literature research on the web to find the
positive and negative issues when comparing Windows and Linux
operating systems with respect to dashboard design.

• Exercise 6.2.4.2: Compare a Windows and a Linux operating system
with respect to the visual appearance and interactive functionality of the
same dashboard code. Can you find any differences?

6.2.5 Internet connection and servers

If we plan to provide a web-based dashboard solution, that is, an interactive
visualization tool that is accessible from everywhere on earth [61] where we
have a stable internet connection and a web browser, we come across further
challenges apart from those with respect to the design rules and the standard
implementation for a local tool, running only on one’s own machine. One
big issue can be real-time data that has to be accessed in regular time rates,
like every second, every minute, or every hour. This demands for a server
that provides fast access to such data in order to keep up with the changing
data over time. In particular, if further advanced algorithms run they have to
update the data in an algorithmically processed form to provide solutions to
tasks at hand, for example, a clustering, grouping, or ordering of a dataset
that is changing over time. If the internet connection is unstable or slow with
respect to transmitted data our algorithms and our visualizations might run
into problems, that is, not showing the least update or not running smoothly
over time. It may be noted that the dashboard itself might run on a different
server than the data that the dashboard is processing and visually depicting.

6.2 Implementation Challenges 225

This is a suitable scenario, but we have to be aware of the fact that if one of
the servers is not running properly, the dashboard itself might suffer. In case
the data server is not working, we might come up with a local (not up-to-date)
dataset that is shown for the users instead of the real-time data until the data
server is back again. If the dashboard server is not working this might be the
bigger evil.

From an implementation and resources perspective, we definitely need
more knowledge about programming aspects, in particular, web-based
programming, requiring to understand client-server architectures. However,
Dash, Python, and Plotly are powerful concepts that take away the burden
from us in this implementation direction. The Heroku server (Section 3.4.1)
was a good alternative until November 28, 2022. After that date, the service
was not offered for free anymore but instead a low-cost alternative replaced
the originally very user-friendly concept. Consequently, the costs for setting
up a server or deploying the dashboard on a server can become a serious
issue, in particular, if the dashboard has to run over longer time periods or
if the data itself with which the dashboard is working has to be provided on
the same server. There is definitely a limit in terms of dataset sizes as well
as algorithmic operations that run on such a server. As a recommendation, it
can be a good advice to not care about the server issue when designing and
implementing a dashboard as a priority aspect, but concentrate on the server
aspect later on. If the dashboard is running locally, getting it running remotely
on the web is an option for which we can find various solutions.

Exercises

• Exercise 6.2.5.1: What are the typical challenges when building
dashboards for a real-time dataset from an internet connection and server
perspective?

• Exercise 6.2.5.2: Search for possible server solutions when creating
web-based interactive visualization tools for real-time data.

6.2.6 Web browsers

Since dashboards can be regarded as some kind of web pages, we can open
them in a standard web browser. There are several of them, all having slightly
different visual appearances, hence, it is a wise idea to check the appearance
of a dashboard at least on the standard most popular web browsers. Most of

226 Challenges and Limitations

the browsers even have a variety of built-in tools and functionality, which
can cause troubles with respect to working with an interactive visualization
tool in the form of a dashboard. Sometimes, the loading of the built-in tools
causes performance issues, hence the slow performance is not caused by the
dashboard but actually comes from the browser side which is sometimes hard
to locate. These effects might even be blamed on older browser versions,
consequently, a good idea is to have running the latest version of a web
browser. This also comes with the problem that even if the dashboard ran
a few weeks ago, it might show up completely differently today which can
be caused by other browser versions. It is a good advice to keep up with
the browser versions and to check the dashboard from time to time on the
newer versions to understand if the functionality and features are still the
same as a time ago. If this is not the case, the dashboard developers might
have to adapt the code to get back the old visual appearance, interaction
techniques, and algorithmic functions. Popular web browsers are, by the
way, Google Chrome, Firefox, Microsoft Edge, Opera, or Safari, just to
mention a few.

An extension to the code brings into play modifications in the
functionality, as a consequence, it is a good advice to test whether the
dashboard is still running in the most popular web browser or if this
extension has a bad impact on some of the features. Apart from the features
such an extension can also have an impact on the performance, sometimes
the extension itself is the bottleneck, for example, when changing from
one library to another one with a similar functionality or when actually
implementing a new algorithm that has not been tested before. But typically,
this issue is caused by the algorithm itself, not by the web browser. The
biggest challenge is mostly to locate the cause of the performance issues.
Is it coming from the code itself or is it coming from the web browser or even
a library that causes trouble when used together with a specific algorithmic
or visual feature. A good advice to reduce browser issues can be to clean
the cache which might still contain some problematic data. Moreover, the
cookies might bring additional challenges into play. Take a closer look at all
browser-related aspects in case the dashboard is not showing up properly.
Before digging too deep into one browser start the dashboard with several
popular browsers to see if it is running at all, or if the code itself might be the
problem.

6.3 Challenges during runtime 227

Exercises

• Exercise 6.2.6.1: Check your own dashboard in the most popular web
browsers like Mozilla Firefox, Google Chrome, Microsoft Edge, Opera,
and Safari. Can you find any differences between the web browsers?

• Exercise 6.2.6.2: Inspect the diagrams in your dashboard and if they
are visually depicted differently in each of the aforementioned web
browsers.

6.3 Challenges during runtime

We can design and implement the best dashboard ever, but on a piece of
paper, everything is fine while running the code in the end can uncover
serious problems which we have not been aware of before. Such challenges
during runtime can come in a variety of forms including data aspects with
respect to the data format, size, or structure, the algorithmic processes [59, 62]
with runtime complexities or NP-completeness [102], the visual output with
a combination of visual variables that are not suitable to show the entire
or a large part of a dataset, and even perceptual issues ranging from color
blindness problems, over visual acuity issues, to display limitations asking
the question whether a dashboard should run on a small-scale smart phone,
a medium-scale laptop or computer display, or a large-scale high-resolution
powerwall [210]. All of those aspects also include interaction techniques that
might suffer from one or several of those negative issues. In some situations,
we cannot even avoid such problems, for example, if the data has a size with
which our designed and implemented dashboard cannot keep up. This means
we definitely run into data, algorithmic, visual, and perceptual challenges,
no matter what we do. Consequently, the data itself has to be filtered or
preprocessed in a way to allow a dashboard to efficiently and effectively show
it to our users.

In this section, we discuss the challenges with respect to data scalability
(Section 6.3.1) focusing on the data format, the structure, and the size.
Moreover, we take a look at typical algorithmic issues that can happen
when processing and transforming data (Section 6.3.2), for example, when
there is no efficient algorithm for solving a problem optimally, but rather
heuristically. From a visualization perspective it makes sense to think about
the number of data elements that can be visually depicted on the display,
that is, visual scalability asks the question whether a dashboard can keep up
with visualizing the increasing size of data (Section 6.3.3). Also of interest

228 Challenges and Limitations

are challenges related to human perception, for example, taking into account
how large our display can be or how many colors can be perceived and
distinguished (Section 6.3.4). All of those challenges play a big role during
the design and implementation processes of an interactive visualization tool,
also in the specific case of a dashboard.

6.3.1 Data scalability

With today’s technologies, we are able to measure, record, and store vast
amounts of data in a multitude of data formats spread over several files and
databases. Such typically heterogeneous data is mostly related to the term
big data [24] including data aspects like volume, velocity, veracity, value,
variability, and variety. These aspects bring into play various challenges
with which an interactive visualization or visual analytics tool has to keep
up to be a powerful, efficient, and effective candidate for data analysis,
data exploration, and data visualization. The data scalability aspect does not
only include the size of the data (as mentioned earlier) but also the rate of
change, that is, in a dynamically updated dataset, a real-time dataset, we must
be aware of the problem that the data can change at infinitesimally small
changing rates, ranging from milliseconds, to seconds, to minutes, to hours,
to days, and so on, or even at much smaller rates. This time granularity is
oftentimes aggregated into another coarser granularity to let the data analysis
in form of algorithms keep up with the incoming data chunks from time to
time. However, the question is whether the algorithm is still able to compute
the results fast enough, that is, faster than the data is coming in; otherwise,
the results might already be outdated.

Another big issue with data scalability is the fact about how many data
sources can be combined and how much data has to be stored after such a
combination. Moreover, when combining or linking data sources we typically
need some kind of unique key with which we can start connecting the data
sources in a reliable way. The linking of the data sources cannot happen
during runtime since this will always cost valuable resources that are needed
elsewhere. In most of the situations, the linking of data sources can be done
as a preprocess, that is, before or even during working with the dashboard
while the results of such a preprocessing are stored to use them later after
the preprocessing is finished. Once the results are computed, and the data are
available, we do not need the same preprocessing again, hence the computing
time is not wasted again. However, a big problem here is that we typically do
not know what and how to preprocess the data. The users can actually request

6.3 Challenges during runtime 229

any kind of data transformation and we do not know the behavior of most of
our users beforehand.

Exercises

• Exercise 6.3.1.1: What is the biggest dataset that your dashboard can
work with? If you do not have your own dashboard, check the dataset
size for the dashboard examples in Chapter 5.

• Exercise 6.3.1.2: Discuss the problem for analyzing and visualizing
real-time data.

6.3.2 Algorithmic scalability

Algorithms play a crucial role in data analysis and also in visualization.
They have an impact on the interactive responsiveness of a visualization
tool. The challenge is to do not let the users wait too long for a solution,
but, in some cases, a fast solution cannot be computed that easily. It is not
an issue of the programming style it is more an issue of the algorithmic
problem itself. There are some algorithms that are said to be NP-hard [163]
which actually means that an optimal solution cannot be computed in a few
steps. We have to wait for a long time to get the optimum, even if we had a
machine with a lot of computing power. If the problem instance is increased
a little bit, our powerful machine cannot keep up with the little bit bigger
problem again. Those algorithmic problems are also called intractable for the
computer [102]. Hence, we are typically not interested in an optimum but we
more or less try to compute a good but not optimal solution which is generated
by a heuristical approach which has a much lower runtime complexity.

Sometimes we cannot judge the runtime of an algorithm in terms of
processing steps, for example as a mathematical function f with input n and
output f(n). But we can still get an impression about the runtime complexity
based on the dataset size as input parameter. The idea here is to execute
the program several times for a given dataset size and increase the dataset
sizes step-by-step. We can measure the time taken to process the dataset of a
certain size for any kind of included algorithm or even the rendering routine
for a visualization technique. Finally, we plot the dataset size on the average
runtime which gives some kind of mathematical function with a certain shape.
This shape of the underlying curve can be used to judge which function the
runtime is following. There are several options (maybe with some outliers)
but the general curve can uncover the runtime behavior of a linear, quadratic,

230 Challenges and Limitations

cubic, or even exponential function. Asking now the question about a still
suitable dataset size for which the dashboard is algorithmically scalable can
be answered by looking at the y-axis and the corresponding runtime while
following the line back to the curve, then reading the dataset size value from
the x-axis. But still, a challenge with the performance measure can be that
an algorithm will behave differently each time for the same dataset, hence,
the only way to create such a runtime plot is by averaging, but again each
individual run can differ from the average curve a lot, hence, such a prediction
might not be very reliable.

Exercises

• Exercise 6.3.2.1: Read a dataset with your dashboard and measure the
time it takes until the data is read and parsed. Increase the dataset size
by copying it 2, 3, 4, 5, and 10 times and append the copies. Measure
the times for all those dataset sizes and create a line plot for showing the
performance of the reading and parsing algorithm.

• Exercise 6.3.2.2: Is there a difference in terms of performances for the
diagrams integrated into the dashboards in Chapter 5?

6.3.3 Visual scalability

The number of data elements to be displayed can grow to an immense
amount, too many to show all of them at the same time in a nonaggregated
fashion. This is actually the challenge, to show as much data as possible but
still be able to detect visual patterns and anomalies in the data. Once the data
reaches a certain size we cannot simply show all data elements, but we might
show them in an aggregated fashion or we could allow filtering techniques
to get rid of the irrelevant ones. This comes with the problem that we do
not know what to aggregate or how to filter the data since we typically do
not know where the most important data elements are located in the dataset
or what the aggregation level will be. Hence, we need some interaction
techniques [258] that help to rapidly modify our views and the data portions
in the display [55]. Such a step-by-step exploration can be helpful but still
for really huge data sources, interaction alone cannot help to get rid of the
visual scalability issue. Each visualization tool reaches its limits at a certain
dataset size, at this stage more advanced algorithms are required to reduce the
amount of data to the most needed one, for example, dimensionality reduction
techniques [94] project high-dimensional data to a lower dimension with the

6.3 Challenges during runtime 231

goal to preserve the structure in the data somehow. Moreover, also clustering
approaches can help to derive patterns in the data that we would not detect
otherwise. Hence, clustering can also add some benefit to visual scalability,
just by restructuring, grouping, and ordering the data.

Visual clutter is the state in which too many data elements are shown
or even their disorganization leads to performance issues when solving
certain tasks [202]. This effect is happening in most of the situations we
have visual scalability issues. Even if a visualization technique is powerful
for a small number of elements, it can be useless for a growing number
of data elements. Then, we might consider another more visually scalable
visualization technique for the same kind of data but in a more scalable
fashion. A famous example can be found for graph or network data for which
node-link diagrams exist, but those only visually scale for around 20 vertices
with a few edges. Matrix-like visualizations are better in this case since they
can be scaled down to pixel size, even if they do not allow path-related tasks
anymore [106]. Such a situation can be found in many application fields,
typically based on a certain data type, like network data as we mentioned
before. The idea is to provide a visualization technique from a repertoire of
many techniques for the same type of data but one that supports task solutions
in data exploration for as many tasks as possible, however, the task with the
highest priority should be under the supported tasks in any case.

Exercises

• Exercise 6.3.3.1: Imagine you had a network consisting of your friends
and the relations they have with each other. How would you visualize
such a dataset, and how visually scalable is your technique?

• Exercise 6.3.3.2: For histograms, we can include really many data
values, but at some point, they also reach a limit in terms of visual
scalability. What can we do with the shown data values to get a more
scalable approach?

6.3.4 Perceptual scalability

Even if the data, algorithmic, and visual scalability issues are not existing,
for example, because the data itself is not big and has a clear structure, we
might still run into the problem of perceptual scalability. This can happen if
we have to deal with a multitude of colors, for categorical data, for example,
too many that the visual observer cannot distinguish them anymore to reliably

232 Challenges and Limitations

and efficiently solve comparison tasks. Although there is a huge number of
different colors, only a few of them can be visually separated, for example,
in a scenario in which data elements use similar colors and are visually
represented at locations in the display that are far apart [245, 246]. This
effect can also be seen in the famous Rubik cube illusion. Color is not the
only challenge here, also the size of the display itself can be a problem. If
the display is too small we might not be able to read the visual depiction of
a dataset, if the display is too large, our visual field is not large enough to
see all visual elements in one view. Also, the human observer can suffer from
visual deficiencies or color blindness, not being able to distinguish colors or
read text in any acceptable font. Hence, wearing glasses or contact lenses can
be a solution, but they will not solve all visual deficiency problems for the
spectator. In the end, we need an advanced user study [48, 57, 60] to find
out which negative perceptual issues exist for each individual person who is
using our dashboard.

Also, effects related to the visual memory can be regarded as perceptual
issues. For example, we can only remember a limited number of objects in
our mind [229]. This is important for comparison tasks if we have to identify
visual patterns first, remember them in our short term memory, to compare
them with other visual patterns in a visual scene that can be found at a
different location in the display. To detect differences between two visual
scenes, we typically run into the problem called change blindness [115],
that is, the visual observers cannot easily find such differences unless they
really pop out from the display like in a preattentive kind of visual depiction.
Moreover, if we do not pay attention to a visual scene, typically a dynamic
scene, it can be quite hard to later tell an experimenter whether a visual pattern
was present or not. Examples for such perceptual effects are demonstrated in
the door study or the invisible gorilla [105, 218]. An object or a person is
not recognized due to the fact that the attention was paid to something else
because a task related to that had to be answered. In visualization this can be
a problem for animated diagrams [233] in which we might miss important
information because we paid attention to something else.

Exercises

• Exercise 6.3.4.1: Discuss the design of a dashboard with respect
to differently large displays, that is, a small-scale smart phone, a
medium-scale computer monitor, and a large-scale powerwall display.

6.4 Testing Challenges 233

• Exercise 6.3.4.2: What would you modify in your standard dashboard
design to make it usable by visually impaired people who have issues
with visual deficiency, visual acuity, and color blindness?

6.4 Testing Challenges

After the design phase and either during or after the implementation phase,
we have to test the created dashboard. This is important to find out whether
the functionality and features are available but also if those have performance
issues with respect to the integrated algorithms but also with respect to the
response time, accuracy, or visual attention behavior of real users. All of
those insights can help to detect design and implementation flaws to find
possible ways to improve the dashboard. Hence, it might be the better but
also more expensive solution to do the testing from time to time and not only
in the end after the final product is ready. Testing costs a lot of time and
can even lead to a complete redesign and, consequently, a reimplementation
of the entire or at least parts of the visualization tool. Testing is challenging
since it should include real users as well as software-related parameters and
environments [39, 82], for example, in case of a dashboard accessible online
we must test the web browsers in use as well as operating systems and the
like. Moreover, the users themselves can stem from any part in the world with
different cultures, languages, signage, symbols, reading habits, and many
more. In some situations, we cannot even work with real data since the data in
use is quite small and artificially making it larger is not a real-world situation.

In this section, we will take a look at some aspects to be tested in a
dashboard before it can be made available to real users. We discuss online
accessibility, that is, how the data can be accessed, processed, and displayed
in a remote web-based approach (Section 6.4.1). The runtime performance
also stands in focus of testing. A low performance of the algorithms can cause
delays in the interaction, and hence, the user-friendliness can suffer from that
(Section 6.4.2). Finally, we take into account, the human users with their
perceptual and visual abilities when using the dashboard. This brings into
play again some challenges with respect to user evaluation, controlled versus
uncontrolled, with or without eye tracking, small-scale versus crowdsourcing,
or many other user study aspects (Section 6.4.3).

234 Challenges and Limitations

6.4.1 Online accessibility

Testing if users can access our dashboard online is a challenging task since
we do not know anything about their operating systems, environments, or
web browsers. What we can do is to record user feedback and track their
clicking behavior while at the same time storing information about their
personal details as well as the system properties they are working in. If we
had enough information about many users, we might hypothesize why certain
users with a certain system property are not confident with the dashboard
while others are. This kind of user evaluation can provide valuable insights
about possible negative issues that our online users have. This perspective
is on the global dashboard but even locally we might find out if certain
components like drop-down menus, sliders, or text fields as well as Plotly
diagrams are working based on user behavior, however, this is some kind
of uncontrolled study setting since we do not know much about our study
participants. A large number of users can, on the other hand, give already
some intuition about what might be a problematic feature worth investigating
and improving in the future.

Further issues can be the location on earth that might have an impact on
the accessibility. Typically, the internet is not that fast everywhere and this can
be problematic when large datasets have to be transmitted to show results for
a server side exploration for example. The speed of the connection can have
an influence on users’ behavior data, that is, when we track mouse behavior,
for example, the mouse movement might be dependent on the interactive
responsiveness of the dashboard, a fact that we actually do not see but what
we might request from our users as qualitative feedback. For most of the
dashboards, the data that is shown in the dashboard is not stored on the
dashboard server but rather on a data server. This is a good idea, but on the
other hand, we are dependent on two servers for which reliable connections
are required to keep the online accessibility criterion stable. If the data server
does not provide the data fast enough, we have to react somehow on this
problem by maybe only showing data elements at a more coarse-grained
temporal rate. On the other hand, this might lead to missing data elements
which is actually not the problem of the dashboard itself but rather of the
data server that is not providing the required data chunks fast enough for our
algorithmic or visual explorations.

6.4 Testing Challenges 235

Exercises

• Exercise 6.4.1.1: Test the explained dashboards in Chapter 5 from
different locations, for example, from home and from your office at a
company.

• Exercise 6.4.1.2: Add a text field as a dash core component in each of the
dashboards in Chapter 5 and request feedback from your online users.
How can you find insights in such qualitative user feedback.

6.4.2 Runtime performance

As already mentioned earlier, a dashboard can be very simple with only a few
functions, but on the other hand, it can be a quite complex system consisting
of algorithms and interactive visualizations like in a visual analytics tool that
is typically based on the data stemming from a specific application area and
on users’ tasks at hand. In the most complex scenario, it is hard to judge
whether it is scalable or not, that is, arguing about runtime performance can
be a challenging task since we do not have clear input and output parameters
used in asymptotic runtime functions. This means we have to let run our tool
several times for the same dataset and measure the time taken. By increasing
the dataset sizes, we can estimate what the runtime performance will be
depending on the dataset sizes. This strategy is a good idea but due to the
fact that our dashboard is already quite complex containing various functions
and features, the measured runtimes will always reflect the total times. Hence,
it is a wise idea to test the individual components separately. This means each
algorithm has to be tested for the growing dataset sizes to find out where in the
code the bottlenecks are located. This is a tedious task, as already mentioned,
there are various algorithms in a complex dashboard if this is understood as
a visual analytics system. However, this is the only way to understand the
runtimes in a real scenario. It may be noted that the best way to explore the
runtime performance over dataset sizes is by plotting them in a line chart to
see whether there is a linear, quadratic, cubic, or exponential behavior, for
example.

Again, the testing is not only dependent on the algorithms themselves.
As we have seen in Section 6.4.1, the internet connection might also play a
crucial role in such runtimes, that is, how fast an algorithm can access its
data to process it. For example, having an unstructured dataset with various
data elements and requesting a clustering algorithm that runs server side can
compute a clustering solution for us, but we never know whether the runtime
is purely based on the algorithm; instead, the biggest part of the runtime can

236 Challenges and Limitations

also be caused by transmitting data. Hence, it is a wise idea to first understand
the functioning of an algorithm and how and where it is implemented, that is,
where it is running: client or server side. In some situations, the dataset is
already too large to wait for an algorithm to terminate. In this scenario it is
good to work in the opposite direction, that is, reducing the size of the data
instead of increasing it, and then computing the runtimes. This can give us a
natural limitation for the largest dataset that can be processed, transformed,
and analyzed by our dashboard.

Exercises

• Exercise 6.4.2.1: Implement different versions of a sorting algorithm and
integrate that into a dashboard. Measure the runtime performances under
different circumstances like operating system, web browser, or the fact
that the algorithm runs on the server or on the client side.

• Exercise 6.4.2.2: Which options do we have when the runtime of an
algorithm integrated into a dashboard is too high, that is, leading to a
noninteractively responsive tool? Discuss!

6.4.3 User performance and evaluation

The best idea to test a dashboard for its functionality and features is to ask real
users. Each of the users has a different experience, ranging from novices to
real experts. Moreover, the users can have a set of properties that hinder them
more or less to properly use the dashboard, for example the visual acuity,
visual deficiency, color blindness, or other visually or physically impaired
issues can occur that all have an impact on the user performance [25].
To measure the usefulness of a dashboard we have a quite long list of
points, however each of the measured data has to be evaluated, statistically,
algorithmically, or visually to find insights in the user behavior to get an
impression about possible design flaws in the dashboard, either with respect
to the user interface, to the visualization techniques, to the interactions, or
to the algorithmic concepts. Possible metrics under investigation are the
following:

• Qualitative feedback

– Verbal: Spoken words can be a good source for finding the
bottlenecks and design flaws in a dashboard. They should be
recorded during a study to not disturb the study participant [129].

6.4 Testing Challenges 237

– Gestures: Gestures can show if a person is confident with a
dashboard or not, based on the movements of the fingers, hands,
and arms [162].

– Facial expressions: The face is an important means to derive
insights from the confidence of a dashboard user. Smiling,
laughing, crying, and the like, all of them carry some meaning
worth exploring [7].

– Textual feedback: Written words are probably the clearest way to
get feedback in a qualitative form [219]; however, they are not that
fine-grained as verbal, gesture, or facial expression feedback.

• Quantitative feedback

– Response times: Giving study participants concrete tasks can also
be a good strategy to measure and record how long it takes until
they come up with an answer. The longer it takes the less clear the
task might have been [60].

– Error rates: A similar measure might be the error rates but this
time we do not record the time taken but more whether the task
was answered correctly, or sometimes even to what extent it was
answered correctly, given as some kind of correctness probability.

• Spatio-temporal user behavior

– Eye movements: Recording the movement of the eyes by using
an eye tracking device is a powerful idea, but the recorded eye
movement data have a spatiotemporal nature [40, 44] which makes
a statistical analysis quite difficult. We could even generate derived
metrics from this kind of data like saccade lengths/orientations,
fixation durations, AOIs, time to first fixation, and many
more [87, 123].

– Mouse movements/clicks: Tracking the movements of the
computer mouse and additional mouse operations like clicks,
drag-and-drop, hover, and the like can be an additional
spatiotemporal measure to the eye movements. Mouse data is
easier to collect since each user is equipped with one, eye trackers
are not that prominent and typically much more expensive.

– Body movements: Another useful measure is given by the body
movements, for example, in a virtual environment (VR), immersive
analytics, or large-display environment [210] in which users can
freely walk around.

238 Challenges and Limitations

• Physiological measures

– Blood pressure: Blood values or properties can give insights in
how stressed a study participant is [136]. However, measuring such
values requires a medical assistant and makes the study setup much
more complicated and ethically problematic.

– Pupil dilation: Eye tracking devices can also measure pupil
dilations [14] that give insights into a variety of aspects, one of
which is how much attention is focused on a certain display area.

– Galvanic skin response: Another useful measure is the galvanic
skin response [131] that might provide insights into further
body-related aspects, for example, what the stress level or the sport
activity level is.

These are just a few important measurements about user behavior but
there are many more. The biggest challenge here is the evaluation, and
analysis of all the recorded user data, that is, finding insights in such study
data to improve the dashboard design, its implementation, and finally, the
usefulness and user-friendliness.

Exercises

• Exercise 6.4.3.1: Ask 20 people to use one of your created dashboards.
Give them a concrete task and measure the time taken and the error
rate. Ask them for verbal feedback. Which insights can you find in
the recorded user study data to improve your dashboard? Are there any
design flaws?

• Exercise 6.4.3.2: What are the challenges before, during, or after a user
study? Discuss!

7
Conclusion

In this book, we described a combination of concepts to help design
and implement dashboards for interactive visualization tools. The book is
actually written for bachelor and master students with not much experience
in information visualization, visual analytics, interaction design, Python
programming, and dashboard implementation. The book is organized in a
way to be studied in its completeness, step-by-step, but also as a chapter-wise
introduction to one or more concepts. We also added various references to
other literature that is related to one or more of the topics in the book. In many
cases, we recommend to read further details in the corresponding literature
since our book cannot cover all topics and close all gaps in all of the mighty
concepts with a focus on visualization, interaction, design, and programming.
To repeat the content of each subsection, we provided a few exercises at
the end of each subsection. The topic of the exercises always has a strong
relation to the subsection in which they can be found. For questions about
exercise understanding or their solution, as well as topics from the book, we
recommend the reader to send emails to the book authors.

We started the book with introducing and motivating the general idea of
using dashboards for interactive visualization for exploratory data analysis,
for example. Moreover, we also mentioned the use of algorithms to handle
datasets consisting of several data types. A dashboard can be understood
as a webpage containing a graphical user interface that is composed of
the interface following more or less prominent interface design rules as
well as visualization techniques following visual design rules. Only their
combination and interplay can create a powerful and interactive visualization
tool, together with advanced, efficient, and effective algorithms that are
powerful enough to process static or dynamic (even real-time) data with
the best user experience possible. Before starting with the implementation
phase to get a promising dashboard result, we also have to take into

239

240 Conclusion

account a prototyping step to create a mockup on which the implementors’
programming steps are based.

There are various ways to build an interactive visualization or visual
analytics tool. In this book, we describe one possible way to get a solution,
without mentioning that this solution is the best one. Python, Dash, and Plotly
are powerful concepts to get a dashboard running, but we have to know
how those ingredients have to be put together, which is a tedious task for
someone who has not much programming experience and maybe also not
much visualization experience. We showed how to install the most required
tools, and we even gave some insights into the deployment of the running
dashboard, that is, uploading the code to a server to make it accessible online,
from everywhere on the earth where we have an internet connection and
a web browser. For the newcomers we even introduced the programming
language Python step-by-step, the advanced programmer can just jump to the
next chapter in the book. To tap the full potential of the book, the reader is
recommended to study the dashboard examples with hand-drawn mockups,
Python code, and a screenshot of the running example, as well as detailed
explanations of the Python code. Finally, we conclude the book by looking
into challenges and limitations.

References

[1] Moataz Abdelaal, Marcel Hlawatsch, Michael Burch, and Daniel
Weiskopf. Clustering for stacked edge splatting. In Fabian Beck,
Carsten Dachsbacher, and Filip Sadlo, editors, Proceedings of 23rd
International Symposium on Vision, Modeling, and Visualization,
VMV, pages 127–134. Eurographics Association, 2018.

[2] Alfie Abdul-Rahman, Karl J. Proctor, Brian Duffy, and Min Chen.
Repeated measures design in crowdsourcing-based experiments for
visualization. In Heidi Lam, Petra Isenberg, Tobias Isenberg, and
Michael Sedlmair, editors, Proceedings of the Fifth Workshop on
Beyond Time and Errors: Novel Evaluation Methods for Visualization,
BELIV, pages 95–102. ACM, 2014.

[3] Amir Ahmad and Shehroz S. Khan. Survey of state-of-the-art mixed
data clustering algorithms. IEEE Access, 7:31883–31902, 2019.

[4] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian
Tominski. Visualization of Time-Oriented Data. Human-Computer
Interaction Series. Springer, 2011.

[5] Badr Al-Harbi, Ali Alturki, and Adel Ahmed. An application of
measuring aesthetics in visualization. In Yuhua Luo, editor, Proceed-
ings of the 13th Conference on Cooperative Design, Visualization,
and Engineering, CDVE, volume 9929 of Lecture Notes in Computer
Science, pages 332–339, 2016.

[6] Aretha Barbosa Alencar, Maria Cristina Ferreira de Oliveira, and
Fernando Vieira Paulovich. Seeing beyond reading: a survey on
visual text analytics. WIREs Data Mining and Knowledge Discovery,
2(6):476–492, 2012.

[7] Abdulrhman Alharbi. Analyzing facial expressions and body gestures
through multimodal metaphors: An intelligent e-feedback interface. In
Masaaki Kurosu, editor, Proceedings of the International Conference
on Human-Computer Interaction, HCI, volume 13303 of Lecture Notes
in Computer Science, pages 291–302. Springer, 2022.

241

242 References

[8] Gennady L. Andrienko, Natalia V. Andrienko, Michael Burch, and
Daniel Weiskopf. Visual analytics methodology for eye movement
studies. IEEE Transactions on Visualization and Computer Graphics,
18(12):2889–2898, 2012.

[9] Daniel Archambault and Helen C. Purchase. The “map” in the mental
map: Experimental results in dynamic graph drawing. International
Journal on Human-Computer Studies, 71(11):1044–1055, 2013.

[10] Daniel W. Archambault and Helen C. Purchase. The mental map
and memorability in dynamic graphs. In Helwig Hauser, Stephen G.
Kobourov, and Huamin Qu, editors, Proceedings of the IEEE Pacific
Visualization Symposium, PacificVis, pages 89–96. IEEE Computer
Society, 2012.

[11] Noppadol Assavakamhaenghan, Waralee Tanaphantaruk, Ponlakit
Suwanworaboon, Morakot Choetkiertikul, and Suppawong Tuarob.
Quantifying effectiveness of team recommendation for collaborative
software development. Automated Software Engineering, 29(2):51,
2022.

[12] Mirjam Augstein and Thomas Neumayr. A human-centered taxonomy
of interaction modalities and devices. Interacting with Computers,
31(1):27–58, 2019.

[13] Benjamin Bach, Euan Freeman, Alfie Abdul-Rahman, Cagatay
Turkay, Saiful Khan, Yulei Fan, and Min Chen. Dashboard design
patterns. IEEE Transactions on Visualization and Computer Graphics,
29(1):342–352, 2023.

[14] Per Bækgaard, John Paulin Hansen, Katsumi Minakata, and I. Scott
MacKenzie. A fitts’ law study of pupil dilations in a head-mounted
display. In Krzysztof Krejtz and Bonita Sharif, editors, Proceedings of
the 11th ACM Symposium on Eye Tracking Research & Applications,
ETRA, pages 32:1–32:5. ACM, 2019.

[15] Moshe Bar and Maital Neta. Humans prefer curved visual objects.
Psychological Science, 17(8):645–648, 2006.

[16] Dirk Bäumer, Walter R. Bischofberger, Horst Lichter, and Heinz
Züllighoven. User interface prototyping - concepts, tools, and
experience. In H. Dieter Rombach, T. S. E. Maibaum, and Marvin V.
Zelkowitz, editors, Proceedings of the 18th International Conference
on Software Engineering, pages 532–541. IEEE Computer Society,
1996.

[17] Fabian Beck. Software feathers - figurative visualization of software
metrics. In Robert S. Laramee, Andreas Kerren, and José Braz, editors,

References 243

Proceedings of the 5th International Conference on Information Visu-
alization Theory and Applications, IVAPP, pages 5–16. SciTePress,
2014.

[18] Fabian Beck, Michael Burch, Stephan Diehl, and Daniel Weiskopf.
A taxonomy and survey of dynamic graph visualization. Computer
Graphics Forum, 36(1):133–159, 2017.

[19] Arnold Beckmann. Notations for exponentiation. Theoretical Com-
puter Science, 288(1):3–19, 2002.

[20] Michael Behrisch, Benjamin Bach, Nathalie Henry Riche, Tobias
Schreck, and Jean-Daniel Fekete. Matrix reordering methods for table
and network visualization. Computer Graphics Forum, 35(3):693–716,
2016.

[21] Jacques Bertin. Semiology of Graphics: Diagrams, Networks, Maps.
Wisconsin: University of Wisconsin Press, (first published in French in
1967 translated by William J. Berg in 1983), 1967.

[22] Jacques Bertin. Graphics and Graphic Information Processing. De
Gruyter, Berlin. Translation:William J. Berg, Paul Scott, 1981.

[23] Jacques Bertin. Semiology of Graphics - Diagrams, Networks, Maps.
ESRI, 2010.

[24] Nikos Bikakis, George Papastefanatos, and Olga Papaemmanouil. Big
data exploration, visualization and analytics. Big Data Research, 18,
2019.

[25] Tanja Blascheck, Michael Burch, Michael Raschke, and Daniel
Weiskopf. Challenges and perspectives in big eye-movement data
visual analytics. In Big Data Visual Analytics, BDVA, pages 17–24.
IEEE, 2015.

[26] Tanja Blascheck and Thomas Ertl. Towards analyzing eye tracking data
for evaluating interactive visualization systems. In Heidi Lam, Petra
Isenberg, Tobias Isenberg, and Michael Sedlmair, editors, Proceedings
of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation
Methods for Visualization, BELIV, pages 70–77. ACM, 2014.

[27] Tanja Blascheck, Markus John, Kuno Kurzhals, Steffen Koch, and
Thomas Ertl. VA2: A visual analytics approach for evaluating visual
analytics applications. IEEE Transactions on Visualization and Com-
puter Graphics, 22(1):61–70, 2016.

[28] Marcus D. Bloice and Andreas Holzinger. A tutorial on machine
learning and data science tools with python. In Andreas Holzinger,
editor, Machine Learning for Health Informatics - State-of-the-Art

244 References

and Future Challenges, volume 9605 of Lecture Notes in Computer
Science, pages 435–480. Springer, 2016.

[29] Marina Bloj and Monika Hedrich. Color perception. In Janglin Chen,
Wayne Cranton, and Mark Fihn, editors, Handbook of Visual Display
Technology, pages 171–178. Springer, 2012.

[30] Agnieszka Bojko. Informative or misleading? heatmaps deconstructed.
In Julie A. Jacko, editor, Proceedings of the Conference on Human-
Computer Interaction, HCI, volume 5610 of Lecture Notes in Com-
puter Science, pages 30–39. Springer, 2009.

[31] Sergey Bolshchikov, Judith Somekh, Shay Mazor, Niva Wengrowicz,
Mordechai Choder, and Dov Dori. Cognition-based visualization of the
dynamics of conceptual models: The vivid OPM scene player. Systems
Engineering, 18(5):431–440, 2015.

[32] David Borland and Russell M. Taylor II. Rainbow color map (still)
considered harmful. IEEE Computer Graphics and Applications,
27(2):14–17, 2007.

[33] Nadia Boukhelifa, Waldo Cancino Ticona, Anastasia Bezerianos, and
Evelyne Lutton. Evolutionary visual exploration: Evaluation with
expert users. Computer Graphics Forum, 32(3):31–40, 2013.

[34] Jan Lauren Boyles and Eric Meyer. Letting the data speak. Digital
Journalism, 4(7):944–954, 2016.

[35] Marc H. Brown. Exploring algorithms using balsa-ii. Computer,
21(5):14–36, 1988.

[36] Valentin Bruder, Christoph Müller, Steffen Frey, and Thomas Ertl.
On evaluating runtime performance of interactive visualizations.
IEEE Transactions on Visualization and Computer Graphics,
26(9):2848–2862, 2020.

[37] William Bugden and Ayman Diyab Alahmar. The safety and
performance of prominent programming languages. International
Journal of Software Engineering and Knowledge Engineering,
32(5):713–744, 2022.

[38] Michael Burch. The aesthetics of diagrams. In Proceedings of the
10th Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, (VISIGRAPP). SciTePress, 2015.

[39] Michael Burch. Visualizing software metrics in a software system
hierarchy. In George Bebis, Richard Boyle, Bahram Parvin, Darko
Koracin, Ioannis T. Pavlidis, Rogério Schmidt Feris, Tim McGraw,
Mark Elendt, Regis Kopper, Eric D. Ragan, Zhao Ye, and Gunther H.
Weber, editors, Proceedings of 11th International Symposium on

References 245

Advances in Visual Computing, ISVC, volume 9475 of Lecture Notes
in Computer Science, pages 733–744. Springer, 2015.

[40] Michael Burch. Identifying similar eye movement patterns with t-sne.
In Fabian Beck, Carsten Dachsbacher, and Filip Sadlo, editors, Pro-
ceedings of the 23rd International Symposium on Vision, Modeling,
and Visualization, VMV, pages 111–118. Eurographics Association,
2018.

[41] Michael Burch. Interaction graphs: visual analysis of eye movement
data from interactive stimuli. In Krzysztof Krejtz and Bonita Sharif,
editors, Proceedings of the 11th ACM Symposium on Eye Tracking
Research & Applications, ETRA, pages 89:1–89:5. ACM, 2019.

[42] Michael Burch. The importance of requirements engineering for
teaching large visualization courses. In Proceedings of 4th Interna-
tional Workshop on Learning from Other Disciplines for Requirements
Engineering, D4RE@RE, pages 6–10. IEEE, 2020.

[43] Michael Burch. Teaching eye tracking visual analytics in computer
and data science bachelor courses. In Andreas Bulling, Anke Huckauf,
Eakta Jain, Ralph Radach, and Daniel Weiskopf, editors, Proceedings
of the Symposium on Eye Tracking Research and Applications, ETRA,
pages 17:1–17:9. ACM, 2020.

[44] Michael Burch. Eye Tracking and Visual Analytics. River Publishers,
2022.

[45] Michael Burch. How students design visual interfaces for information
visualization tools. In Michael Burch, Günter Wallner, and Daniel
Limberger, editors, Proceedings of the 15th International Symposium
on Visual Information Communication and Interaction, VINCI, pages
1:1–1:8. ACM, 2022.

[46] Michael Burch, Gennady L. Andrienko, Natalia V. Andrienko, Markus
Höferlin, Michael Raschke, and Daniel Weiskopf. Visual task solution
strategies in tree diagrams. In Sheelagh Carpendale, Wei Chen, and
Seok-Hee Hong, editors, Proceedings of IEEE Pacific Visualization
Symposium, PacificVis, pages 169–176. IEEE Computer Society, 2013.

[47] Michael Burch, Weidong Huang, Mathew Wakefield, Helen C.
Purchase, Daniel Weiskopf, and Jie Hua. The state of the art in
empirical user evaluation of graph visualizations. IEEE Access,
9:4173–4198, 2021.

[48] Michael Burch, Natalia Konevtsova, Julian Heinrich, Markus Höferlin,
and Daniel Weiskopf. Evaluation of traditional, orthogonal, and radial

246 References

tree diagrams by an eye tracking study. IEEE Transactions on Visual-
ization and Computer Graphics, 17(12):2440–2448, 2011.

[49] Michael Burch, Andreas Kull, and Daniel Weiskopf. AOI rivers for
visualizing dynamic eye gaze frequencies. Computer Graphics Forum,
32(3):281–290, 2013.

[50] Michael Burch, Ayush Kumar, and Neil Timmermans. An interactive
web-based visual analytics tool for detecting strategic eye movement
patterns. In Krzysztof Krejtz and Bonita Sharif, editors, Proceedings of
the 11th ACM Symposium on Eye Tracking Research & Applications,
ETRA, pages 93:1–93:5. ACM, 2019.

[51] Michael Burch, Steffen Lohmann, Daniel Pompe, and Daniel
Weiskopf. Prefix tag clouds. In Proceedings of 17th International Con-
ference on Information Visualisation, IV, pages 45–50. IEEE Computer
Society, 2013.

[52] Michael Burch and Elisabeth Melby. What more than a hundred project
groups reveal about teaching visualization. Journal of Visualization,
23(5):895–911, 2020.

[53] Michael Burch, Tanja Munz, Fabian Beck, and Daniel Weiskopf.
Visualizing work processes in software engineering with developer
rivers. In Proceedings of the 3rd IEEE Working Conference on
Software Visualization, VISSOFT, pages 116–124. IEEE Computer
Society, 2015.

[54] Michael Burch, Michael Raschke, Adrian Zeyfang, and Daniel
Weiskopf. A scalable visualization for dynamic data in software
system hierarchies. In Proceedings of the IEEE Working Conference
on Software Visualization, VISSOFT, pages 85–93. IEEE, 2017.

[55] Michael Burch and Hansjörg Schmauder. Challenges and perspectives
of interacting with hierarchy visualizations on large-scale displays. In
Andreas Kerren, Karsten Klein, and Yi-Na Li, editors, Proceedings of
the 11th International Symposium on Visual Information Communica-
tion and Interaction, VINCI, pages 33–40. ACM, 2018.

[56] Michael Burch, Hansjörg Schmauder, Michael Raschke, and Daniel
Weiskopf. Saccade plots. In Pernilla Qvarfordt and Dan Witzner
Hansen, editors, Proceedings of the Symposium on Eye Tracking
Research and Applications, ETRA, pages 307–310. ACM, 2014.

[57] Michael Burch, Hansjörg Schmauder, and Daniel Weiskopf. Indented
pixel tree browser for exploring huge hierarchies. In Proceedings of the
7th International Symposium on Advances in Visual Computing, ISVC,

References 247

volume 6938 of Lecture Notes in Computer Science, pages 301–312.
Springer, 2011.

[58] Michael Burch, Julian Strotzer, and Daniel Weiskopf. Visual analysis
of source code similarities. In Ebad Banissi et al., editor, Proceedings
of the 19th International Conference on Information Visualisation, IV,
pages 21–27. IEEE Computer Society, 2015.

[59] Michael Burch, Huub van de Wetering, Günter Wallner, Freek Rooks,
and Olof Morra. Exploring the dynamics of graph algorithms. Journal
of Visualization, 2022.

[60] Michael Burch, Corinna Vehlow, Natalia Konevtsova, and Daniel
Weiskopf. Evaluating partially drawn links for directed graph edges.
In Marc J. van Kreveld and Bettina Speckmann, editors, Proceedings
of the 19th International Symposium on Graph Drawing, GD, volume
7034 of Lecture Notes in Computer Science, pages 226–237. Springer,
2011.

[61] Michael Burch, Adrian Vramulet, Alex Thieme, Alina Vorobiova,
Denis Shehu, Mara Miulescu, Mehrdad Farsadyar, and Tar van
Krieken. Vizwick: a multiperspective view of hierarchical data. In
Michael Burch, Michel A. Westenberg, Quang Vinh Nguyen, and
Ying Zhao, editors, Proceedings of the 13th International Symposium
on Visual Information Communication and Interaction, VINCI, pages
23:1–23:5. ACM, 2020.

[62] Michael Burch, Günter Wallner, Huub van de Wetering, Freek Rooks,
and Olof Morra. Visual analysis of graph algorithm dynamics. In
Karsten Klein, Michael Burch, Daniel Limberger, and Matthias Trapp,
editors, Proceedings of the 14th International Symposium on Visual
Information Communication and Interaction, VINCI, pages 16:1–16:5.
ACM, 2021.

[63] Michael Burch, Günter Wallner, Huub van de Wetering, Shahrukh
Tufail, Linda Zandt-Sloot, Stasius Gladkis, Minji Hong, and Carlo
Lepelaars. Famsearch: Visual analysis of genealogical data. In George
Bebis, Vassilis Athitsos, Tong Yan, Manfred Lau, Frederick Li, Conglei
Shi, Xiaoru Yuan, Christos Mousas, and Gerd Bruder, editors, Proceed-
ings of 16th International Symposium on Advances in Visual Comput-
ing, ISVC, volume 13018 of Lecture Notes in Computer Science, pages
374–385. Springer, 2021.

[64] Michael Burch and Daniel Weiskopf. A flip-book of edge-splatted
small multiples for visualizing dynamic graphs. In Tomasz Bednarz,

248 References

Weidong Huang, Quang Vinh Nguyen, and Yingcai Wu, editors, Pro-
ceedings of the 7th International Symposium on Visual Information
Communication and Interaction, VINCI, page 29.

[65] Michael Burch and Daniel Weiskopf. Visualizing dynamic quantitative
data in hierarchies - timeedgetrees: Attaching dynamic weights to
tree edges. In Gabriela Csurka, Martin Kraus, and José Braz, editors,
Proceedings of the International Conference on Imaging Theory and
Applications and International Conference on Information Visualiza-
tion Theory and Applications, pages 177–186. SciTePress, 2011.

[66] Wolfram Büttner and Helmut Simonis. Embedding boolean
expressions into logic programming. Journal of Symbolic
Computation, 4(2):191–205, 1987.

[67] Bram C. M. Cappers, Paulus N. Meessen, Sandro Etalle, and Jarke J.
van Wijk. Eventpad: Rapid malware analysis and reverse engineering
using visual analytics. In Diane Staheli, Celeste Lyn Paul, Jörn
Kohlhammer, Daniel M. Best, Stoney Trent, Nicolas Prigent, Robert
Gove, and Graig Sauer, editors, Proceedings of IEEE Symposium on
Visualization for Cyber Security, VizSec, pages 1–8. IEEE, 2018.

[68] Mónica A. Carreño-León, Jesús Andrés Sandoval-Bringas, Teresita
de Jesús Álvarez Robles, Rafael Cosio-Castro, Italia Estrada Cota,
and Alejandro Leyva Carrillo. Designing a tangible user interface for
braille teaching. In Constantine Stephanidis, Margherita Antona, Qin
Gao, and Jia Zhou, editors, Proceedings of the 22nd HCI International
Conference - Late Breaking Papers: Universal Access and Inclusive
Design, volume 12426 of Lecture Notes in Computer Science, pages
197–207. Springer, 2020.

[69] Marco A. Casanova. A theory of data dependencies over relational
expressions. International Journal of Parallel Programming,
12(3):151–191, 1983.

[70] Carl Chapman and Kathryn T. Stolee. Exploring regular expression
usage and context in python. In Andreas Zeller and Abhik
Roychoudhury, editors, Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, ISSTA, pages 282–293. ACM,
2016.

[71] Colombe Chappey, A. Danckaert, Philippe Dessen, and Serge A.
Hazout. MASH: an interactive program for multiple alignment and
consensus sequence construction for biological sequences. Computer
Applications in the Biosciences, 7(2):195–202, 1991.

References 249

[72] Herman Chernoff. Chernoff faces. In Miodrag Lovric, editor, Interna-
tional Encyclopedia of Statistical Science, pages 243–244. Springer,
2011.

[73] William S. Cleveland and Robert McGill. An experiment in
graphical perception. International Journal of Man-Machine Studies,
25(5):491–501, 1986.

[74] Johanne Cohen, Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch,
and Gregory Kucherov. Optimal linear arrangement of interval graphs.
In Rastislav Kralovic and Pawel Urzyczyn, editors, Proceedings of
the 31st International Symposium on Mathematical Foundations of
Computer Science, MFCS, volume 4162 of Lecture Notes in Computer
Science, pages 267–279. Springer, 2006.

[75] Alberto Corvò, Marc A. van Driel, and Michel A. Westenberg.
Pathova: A visual analytics tool for pathology diagnosis and reporting.
In Proceedings of IEEE Workshop on Visual Analytics in Healthcare,
VAHC, pages 77–83. IEEE, 2017.

[76] Alberto Corvò, Michel A. Westenberg, Reinhold Wimberger-Friedl,
Stephan Fromme, Michel M. R. Peeters, Marc A. van Driel, and
Jarke J. van Wijk. Visual analytics in digital pathology: Challenges
and opportunities. In Barbora Kozlíková and Renata Georgia Raidou,
editors, Proceedings of the Eurographics Workshop on Visual Comput-
ing for Biology and Medicine, VCBM, pages 129–143. Eurographics
Association, 2019.

[77] Adrien Coyette, Suzanne Kieffer, and Jean Vanderdonckt.
Multi-fidelity prototyping of user interfaces. In Maria Cecília Calani
Baranauskas, Philippe A. Palanque, Julio Abascal, and Simone
Diniz Junqueira Barbosa, editors, Proceedings of the International
Conference on Human-Computer Interaction, INTERACT, volume
4662 of Lecture Notes in Computer Science, pages 150–164. Springer,
2007.

[78] Qingguang Cui, Matthew O. Ward, and Elke A. Rundensteiner.
Enhancing scatterplot matrices for data with ordering or spatial
attributes. In Robert F. Erbacher, Jonathan C. Roberts, Matti T. Gröhn,
and Katy Börner, editors, Proceedings of the Conference on Visualiza-
tion and Data Analysis, VDA, volume 6060 of SPIE Proceedings, page
60600R. SPIE, 2006.

[79] Andrea Cuttone, Sune Lehmann, and Jakob Eg Larsen. Geoplotlib:
a python toolbox for visualizing geographical data. CoRR,
abs/1608.01933, 2016.

250 References

[80] Sarah D’Angelo and Bertrand Schneider. Shared gaze visualizations
in collaborative interactions: Past, present and future. Interacting with
Computers, 33(2):115–133, 2021.

[81] Patrik Danielsson, Tom Postema, and Hussan Munir. Heroku-based
innovative platform for web-based deployment in product development
at axis. IEEE Access, 9:10805–10819, 2021.

[82] Stephan Diehl. Software Visualization - Visualizing the Structure,
Behaviour, and Evolution of Software. Springer, 2007.

[83] Stephan Diehl, Fabian Beck, and Michael Burch. Uncovering
strengths and weaknesses of radial visualizations—an empirical
approach. IEEE Transactions on Visualization and Computer Graph-
ics, 16(6):935–942, 2010.

[84] Stephan Diehl and Carsten Görg. Graphs, they are changing. In
Stephen G. Kobourov and Michael T. Goodrich, editors, Proceedings
of the 10th International Symposium on Graph Drawing, GD, volume
2528 of Lecture Notes in Computer Science, pages 23–30. Springer,
2002.

[85] Thomas Ditzinger. Optical illusions: Examples for nonlinear dynamics
in perception. In Raoul Huys and Viktor K. Jirsa, editors, Nonlinear
Dynamics in Human Behavior, volume 328 of Studies in Computa-
tional Intelligence, pages 179–191. 2011.

[86] Andrew T. Duchowski. Eye Tracking Methodology - Theory and
Practice, Third Edition. Springer, 2017.

[87] Andrew T. Duchowski, Eric Medlin, Nathan Cournia, Anand K.
Gramopadhye, Brian J. Melloy, and Santosh Nair. 3d eye movement
analysis for VR visual inspection training. In Andrew T. Duchowski,
Roel Vertegaal, and John W. Senders, editors, Proceedings of the Eye
Tracking Research & Application Symposium, ETRA, pages 103–110.
ACM, 2002.

[88] Alireza Ebrahimi. VPCL: A visual language for teaching and learning
programming. (A picture is worth a thousand words). Journal of Visual
Languages and Computing, 3(3):299–317, 1992.

[89] Alistair D. N. Edwards. The design of auditory interfaces for visually
disabled users. In J. J. O’Hare, editor, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI, pages
83–88. ACM, 1988.

[90] Raku Egawa and Takashi Ijiri. Multi-window web browser with history
tree visualization for virtual reality environment. In Jeffrey Nichols,
Ranjitha Kumar, and Michael Nebeling, editors, Proceedings of the

References 251

Adjunct Publication of the 34th Annual ACM Symposium on User
Interface Software and Technology, Virtual Event, UIST, pages 32–34.
ACM, 2021.

[91] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner Jr. Seesoft-a
tool for visualizing line oriented software statistics. IEEE Transactions
on Software Engineering, 18(11):957–968, 1992.

[92] Albert Einstein. Die Grundlage der allgemeinen Relativitätstheorie.
In: Das Relativitätsprinzip. Fortschritte der Mathematischen Wis-
senschaften in Monographien. Vieweg+Teubner Verlag, Wiesbaden,
1923.

[93] Geoffrey P. Ellis and Alan J. Dix. An explorative analysis of user
evaluation studies in information visualisation. In Enrico Bertini,
Catherine Plaisant, and Giuseppe Santucci, editors, Proceedings of the
AVI Workshop on BEyond time and errors: novel evaluation methods
for information visualization, BELIV, pages 1–7. ACM Press, 2006.

[94] Mateus Espadoto, Rafael Messias Martins, Andreas Kerren, Nina S. T.
Hirata, and Alexandru C. Telea. Toward a quantitative survey of
dimension reduction techniques. IEEE Transactions on Visualization
and Computer Graphics, 27(3):2153–2173, 2021.

[95] Jean-Daniel Fekete, Jarke J. van Wijk, John T. Stasko, and Chris North.
The value of information visualization. In Andreas Kerren, John T.
Stasko, Jean-Daniel Fekete, and Chris North, editors, Information Visu-
alization - Human-Centered Issues and Perspectives, volume 4950 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

[96] Amanda Coelho Figliolia, Frode Eika Sandnes, and Fausto Orsi
Medola. Experiences using three app prototyping tools with different
levels of fidelity from a product design student’s perspective. In
Tien-Chi Huang, Ting-Ting Wu, João Barroso, Frode Eika Sandnes,
Paulo Martins, and Yueh-Min Huang, editors, Proceedings of the 3rd
International Conference on Innovative Technologies and Learning,
ICITL, volume 12555 of Lecture Notes in Computer Science, pages
557–566. Springer, 2020.

[97] Charles N. Fischer. On parsing and compiling arithmetic expressions
on vector computers. ACM Transactions on Programming Languages
and Systems, 2(2):203–224, 1980.

[98] Johann Christoph Freytag, Raghu Ramakrishnan, and Rakesh Agrawal.
Data mining: The next generation. it - Information Technology,
47(5):308–312, 2005.

252 References

[99] Johannes Fuchs, Dominik Jäckle, Niklas Weiler, and Tobias Schreck.
Leaf glyph - visualizing multi-dimensional data with environmental
cues. In José Braz, Andreas Kerren, and Lars Linsen, editors, Proceed-
ings of the 6th International Conference on Information Visualization
Theory and Applications, IVAPP, pages 195–206. SciTePress, 2015.

[100] Katarína Furmanová, Samuel Gratzl, Holger Stitz, Thomas Zichner,
Miroslava Jaresová, Alexander Lex, and Marc Streit. Taggle:
Combining overview and details in tabular data visualizations. Infor-
mation Visualization, 19(2), 2020.

[101] Daniel Fürstenau, Flavio Morelli, Kristina Meindl, Matthias
Schulte-Althoff, and Jochen Rabe. A social citizen dashboard
for participatory urban planning in berlin: Prototype and evaluation. In
Proceedings of the 54th Hawaii International Conference on System
Sciences, HICSS, pages 1–10. ScholarSpace, 2021.

[102] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[103] Fengpei Ge and Yonghong Yan. Deep neural network based
wake-up-word speech recognition with two-stage detection. In Pro-
ceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP, pages 2761–2765. IEEE, 2017.

[104] Narain H. Gehani. Data Types for Very High Level Programming
Languages. PhD thesis, Cornell University, USA, 1975.

[105] Helene Gelderblom and Leanne Menge. The invisible gorilla revisited:
using eye tracking to investigate inattentional blindness in interface
design. In Tiziana Catarci, Kent L. Norman, and Massimo Mecella,
editors, Proceedings of the International Conference on Advanced
Visual Interfaces, AVI, pages 39:1–39:9. ACM, 2018.

[106] Mohammad Ghoniem, Jean-Daniel Fekete, and Philippe Castagliola.
On the readability of graphs using node-link and matrix-based
representations: a controlled experiment and statistical analysis. Infor-
mation Visualization, 4(2):114–135, 2005.

[107] Tiago Gonçalves, Ana Paula Afonso, and Bruno Martins. Visualization
techniques of trajectory data: Challenges and limitations. In Stephan
Mäs, Lars Bernard, and Hardy Pundt, editors, Proceedings of the 2nd
AGILE PhD School, volume 1136 of CEUR Workshop Proceedings.
CEUR-WS.org, 2013.

[108] Saul Gorn. Code extension in ASCII. Communications of the ACM,
9(10):758–762, 1966.

References 253

[109] Lars Grammel. User interfaces supporting information visualiza-
tion novices in visualization construction. PhD thesis, University of
Victoria, Canada, 2012.

[110] Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson. Software
developers, moods, emotions, and performance. IEEE Software,
31(4):24–27, 2014.

[111] Martin Greilich, Michael Burch, and Stephan Diehl. Visualizing the
evolution of compound digraphs with timearctrees. Computer Graph-
ics Forum, 28(3):975–982, 2009.

[112] David Gries and Gary Levin. Computing fibonacci numbers (and
similarly defined functions) in log time. Information Processing Let-
ters, 11(2):68–69, 1980.

[113] Irène Guessarian and José Meseguer. On the axiomatization of
"if-then-else". SIAM Journal on Computing, 16(2):332–357, 1987.

[114] Jens Gulden. Recommendations for data visualizations based on gestalt
patterns. In Gang Li and Yale Yu, editors, Proceedings of the 4th
International Conference on Enterprise Systems, ES, pages 168–177.
IEEE Computer Society, 2016.

[115] Christopher G. Healey and James T. Enns. Attention and visual
memory in visualization and computer graphics. IEEE Transactions
on Visualization and Computer Graphics, 18(7):1170–1188, 2012.

[116] Julian Heinrich. Visualization techniques for parallel coordinates. PhD
thesis, University of Stuttgart, 2013.

[117] Julian Heinrich and Daniel Weiskopf. State of the art of parallel
coordinates. In Mateu Sbert and László Szirmay-Kalos, editors, Pro-
ceedings of 34th Annual Conference of the European Association for
Computer Graphics, Eurographics - State of the Art Reports, pages
95–116. Eurographics Association, 2013.

[118] Nathalie Henry and Jean-Daniel Fekete. Matlink: Enhanced matrix
visualization for analyzing social networks. In Maria Cecília Calani
Baranauskas, Philippe A. Palanque, Julio Abascal, and Simone
Diniz Junqueira Barbosa, editors, Proceedings of the International
Conference on Human-Computer Interaction - INTERACT, volume
4663 of Lecture Notes in Computer Science, pages 288–302. Springer,
2007.

[119] Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin.
Nodetrix: a hybrid visualization of social networks. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1302–1309, 2007.

254 References

[120] Gregor Herda and Robert McNabb. Python for smarter cities:
Comparison of python libraries for static and interactive visualisations
of large vector data. CoRR, abs/2202.13105, 2022.

[121] Marcel Hlawatsch, Michael Burch, and Daniel Weiskopf. Visual
adjacency lists for dynamic graphs. IEEE Transactions on Visualiza-
tion and Computer Graphics, 20(11):1590–1603, 2014.

[122] Heike Hofmann and Marie Vendettuoli. Common angle plots as
perception-true visualizations of categorical associations. IEEE Trans-
actions on Visualization and Computer Graphics, 19(12):2297–2305,
2013.

[123] Kenneth Holmqvist. Eye tracking: a comprehensive guide to methods
and measures. Oxford University Press, 2011.

[124] Danny Holten. Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data. IEEE Transactions on Visualization and
Computer Graphics, 12(5):741–748, 2006.

[125] Danny Holten, Petra Isenberg, Jarke J. van Wijk, and Jean-Daniel
Fekete. An extended evaluation of the readability of tapered, animated,
and textured directed-edge representations in node-link graphs. In
Giuseppe Di Battista, Jean-Daniel Fekete, and Huamin Qu, editors,
Proceedings of the IEEE Pacific Visualization Symposium, PacificVis,
pages 195–202. IEEE Computer Society, 2011.

[126] Danny Holten and Jarke J. van Wijk. Force-directed edge bundling for
graph visualization. Computer Graphics Forum, 28(3):983–990, 2009.

[127] Chen Hong. Design of human-computer interaction interface
considering user friendliness. International Journal of Reasoning-
based Intelligent Systems, 9(3/4):162–169, 2017.

[128] Tom Horak, Philip Berger, Heidrun Schumann, Raimund Dachselt,
and Christian Tominski. Responsive matrix cells: A focus+context
approach for exploring and editing multivariate graphs. IEEE Trans-
actions on Visualization and Computer Graphics, 27(2):1644–1654,
2021.

[129] Derek Hwang, Vardhan Agarwal, Yuzi Lyu, Divyam Rana,
Satya Ganesh Susarla, and Adalbert Gerald Soosai Raj. A qualitative
analysis of lecture videos and student feedback on static code examples
and live coding: A case study. In Claudia Szabo and Judy Sheard,
editors, Proceedings of the 23rd Australasian Computing Education
Conference, ACE, pages 147–157. ACM, 2021.

[130] Alfred Inselberg and Bernard Dimsdale. Parallel coordinates: A tool
for visualizing multi-dimensional geometry. In Arie E. Kaufman,

References 255

editor, Proceedings of 1st IEEE Visualization Conference, IEEE Vis,
pages 361–378. IEEE Computer Society Press, 1990.

[131] Atiqul Islam, Jinshuai Ma, Tom Gedeon, Md. Zakir Hossain, and
Ying-Hsang Liu. Measuring user responses to driving simulators:
A galvanic skin response based study. In Proceedings of the IEEE
International Conference on Artificial Intelligence and Virtual Reality,
AIVR, pages 33–40. IEEE, 2019.

[132] Wolfgang Jeltsch. Strongly typed and efficient functional reactive
programming. PhD thesis, Brandenburg University of Technology,
2011.

[133] Markus John, Eduard Marbach, Steffen Lohmann, Florian Heimerl,
and Thomas Ertl. Multicloud: Interactive word cloud visualization for
the analysis of multiple texts. In Christopher Batty and Derek Reilly,
editors, Proceedings of the 44th Graphics Interface Conference, pages
34–41. ACM, 2018.

[134] Toon Jouck and Benoît Depaire. Ptandloggenerator: A generator for
artificial event data. In Leonardo Azevedo and Cristina Cabanillas,
editors, Proceedings of the BPM Demo Track Co-located with the
14th International Conference on Business Process Management
BPM, volume 1789 of CEUR Workshop Proceedings, pages 23–27.
CEUR-WS.org, 2016.

[135] Byeongdo Kang. An integrated software development environment for
web applications. In Walter Dosch, Roger Y. Lee, and Chisu Wu,
editors, Proceedings of the 2nd International Conference on Software
Engineering Research, Management and Applications, SERA, volume
3647 of Lecture Notes in Computer Science, pages 138–155. Springer,
2004.

[136] Ya-Ling Kao, Yu-Kuang Chen, and Jai-Tsung Hong. The efficacy
of heart spectrum blood pressure monitor: A study of bus drivers.
In IEEE International Conference on Consumer Electronics-Taiwan,
ICCE-TW, pages 1–2. IEEE, 2021.

[137] Mohammed Kayed and Ahmed A. Elngar. Nestmsa: a new multiple
sequence alignment algorithm. The Journal of Supercomputing,
76(11):9168–9188, 2020.

[138] Mandy Keck and Lars Engeln. Sparkle glyphs: A glyph design for
the analysis of temporal multivariate audio features. In Paolo Bottoni
and Emanuele Panizzi, editors, Proceedings of the International Con-
ference on Advanced Visual Interfaces, AVI, pages 66:1–66:3. ACM,
2022.

256 References

[139] Daniel A. Keim. Solving problems with visual analytics: Challenges
and applications. In Proceedings of Machine Learning and Knowledge
Discovery in Databases - European Conference, pages 5–6, 2012.

[140] Daniel A. Keim. Solving problems with visual analytics: The role of
visualization and analytics in exploring big data. In Volker Markl,
Gunter Saake, Kai-Uwe Sattler, Gregor Hackenbroich, Bernhard
Mitschang, Theo Härder, and Veit Köppen, editors, Datenbanksysteme
für Business, Technologie und Web (BTW), 15. Fachtagung des GI-
Fachbereichs "Datenbanken und Informationssysteme" (DBIS), 11.-
15.3.2013 in Magdeburg, Germany. Proceedings, volume P-214 of
LNI, pages 17–18. GI, 2013.

[141] Daniel A. Keim, Gennady L. Andrienko, Jean-Daniel Fekete, Carsten
Görg, Jörn Kohlhammer, and Guy Melançon. Visual analytics:
Definition, process, and challenges. In Andreas Kerren, John T. Stasko,
Jean-Daniel Fekete, and Chris North, editors, Information Visual-
ization - Human-Centered Issues and Perspectives, volume 4950 of
Lecture Notes in Computer Science, pages 154–175. Springer, 2008.

[142] Daniel A. Keim, Peter Bak, and Matthias Schäfer. Dense pixel displays.
In Ling Liu and M. Tamer Özsu, editors, Encyclopedia of Database
Systems, Second Edition. Springer, 2018.

[143] Daniel A. Keim, Florian Mansmann, Jörn Schneidewind, Jim Thomas,
and Hartmut Ziegler. Visual analytics: Scope and challenges. In
Simeon J. Simoff, Michael H. Böhlen, and Arturas Mazeika, editors,
Visual Data Mining - Theory, Techniques and Tools for Visual Analyt-
ics, volume 4404 of Lecture Notes in Computer Science, pages 76–90.
Springer, 2008.

[144] Daniel A. Keim, Florian Mansmann, Jörn Schneidewind, and Hartmut
Ziegler. Challenges in visual data analysis. In Proceedings of 10th
International Conference on Information Visualisation, IV, pages
9–16. IEEE Computer Society, 2006.

[145] Saiful Khan, Phong Hai Nguyen, Alfie Abdul-Rahman, Benjamin
Bach, Min Chen, Euan Freeman, and Cagatay Turkay. Propagating
visual designs to numerous plots and dashboards. IEEE Transactions
on Visualization and Computer Graphics, 28(1):86–95, 2022.

[146] Karsten Klein, Sabrina Jaeger, Jörg Melzheimer, Bettina Wachter,
Heribert Hofer, Artur Baltabayev, and Falk Schreiber. Visual analytics
of sensor movement data for cheetah behaviour analysis. Journal of
Visualization, 24(4):807–825, 2021.

References 257

[147] Kurt Koffka. Principles of Gestalt Psychology. New York: Harcourt,
Brace, 1935.

[148] Jun Kogure, Noboru Kunihiro, and Hirosuke Yamamoto. On the
hardness of subset sum problem from different intervals. IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Science, 95-A(5):903–908, 2012.

[149] Tobias Kohn. Teaching Python Programming to Novices: Addressing
Misconceptions and Creating a Development Environment. PhD thesis,
ETH Zurich, Zürich, Switzerland, 2017.

[150] Joseph Kotlarek, Oh-Hyun Kwon, Kwan-Liu Ma, Peter Eades,
Andreas Kerren, Karsten Klein, and Falk Schreiber. A study of mental
maps in immersive network visualization. In Proceedings of the IEEE
Pacific Visualization Symposium, PacificVis, pages 1–10. IEEE, 2020.

[151] Kuno Kurzhals, Michael Burch, Tanja Blascheck, Gennady Andrienko,
Natalia Andrienko, and Daniel Weiskopf. A task-based view on
the visual analysis of eye-tracking data. In Michael Burch, Lewis
Chuang, Brian Fisher, Albrecht Schmidt, and Daniel Weiskopf, editors,
Eye Tracking and Visualization, pages 3–22. Springer International
Publishing, 2017.

[152] Kuno Kurzhals, Brian D. Fisher, Michael Burch, and Daniel Weiskopf.
Evaluating visual analytics with eye tracking. In Heidi Lam, Petra
Isenberg, Tobias Isenberg, and Michael Sedlmair, editors, Proceedings
of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation
Methods for Visualization, BELIV, pages 61–69. ACM, 2014.

[153] Kuno Kurzhals, Brian D. Fisher, Michael Burch, and Daniel Weiskopf.
Eye tracking evaluation of visual analytics. Information Visualization,
15(4):340–358, 2016.

[154] Kuno Kurzhals, Florian Heimerl, and Daniel Weiskopf. ISeeCube:
visual analysis of gaze data for video. In Pernilla Qvarfordt and
Dan Witzner Hansen, editors, Proceedings of Symposium on Eye
Tracking Research and Applications, ETRA, pages 43–50. ACM, 2014.

[155] Kuno Kurzhals, Marcel Hlawatsch, Florian Heimerl, Michael Burch,
Thomas Ertl, and Daniel Weiskopf. Gaze stripes: Image-based
visualization of eye tracking data. IEEE Transactions on Visualization
and Computer Graphics, 22(1):1005–1014, 2016.

[156] Florian Lachner, Mai-Anh Nguyen, and Andreas Butz. Culturally
sensitive user interface design: a case study with German and
Vietnamese users. In Heike Winschiers-Theophilus, Izak van Zyl,
Naska Goagoses, Dharm Singh Jat, Elefelious G. Belay, Rita Orji,

258 References

Anicia Peters, Med Salim Bouhlel, and Nobert Jere, editors, Pro-
ceedings of the Second African Conference for Human Computer
Interaction: Thriving Communities, AfriCHI, pages 1:1–1:12. ACM,
2018.

[157] Fabrizio Lamberti, Federico Manuri, and Andrea Sanna. Multivariate
visualization using scatterplots. In Newton Lee, editor, Encyclopedia
of Computer Graphics and Games. Springer, 2019.

[158] Ricardo Langner, Ulrike Kister, and Raimund Dachselt. Multiple
coordinated views at large displays for multiple users: Empirical
findings on user behavior, movements, and distances. IEEE Trans-
actions on Visualization and Computer Graphics, 25(1):608–618,
2019.

[159] Janusz W. Laski. On readability of programs with loops. ACM SIG-
PLAN Notices, 14(11):73–83, 1979.

[160] Daewon Lee. Nezzle: an interactive and programmable visualization
of biological networks in python. Bioinformatics, 38(12):3310–3311,
2022.

[161] Meng-Tse Lee, Fong-Ci Lin, Szu-Ta Chen, Wan-Ting Hsu, Samuel
Lin, Tzer-Shyong Chen, Feipei Lai, and Chien-Chang Lee. Web-based
dashboard for the interactive visualization and analysis of national
risk-standardized mortality rates of sepsis in the US. Journal of
Medical Systems, 44(2):54, 2020.

[162] Grégoire Lefebvre, Emmanuelle Boyer, and Sophie Zijp-Rouzier.
Coupling gestures with tactile feedback: a comparative user study. In
Lone Malmborg and Thomas Pederson, editors, Proceedings of the
Nordic Conference on Human-Computer Interaction, NordiCHI, pages
380–387. ACM, 2012.

[163] Wenjun Li, Yang Ding, Yongjie Yang, R. Simon Sherratt, Jong Hyuk
Park, and Jin Wang. Parameterized algorithms of fundamental np-hard
problems: a survey. Human-centric Computing and Information Sci-
ences, 10:29, 2020.

[164] Xiao-Hui Li, Caleb Chen Cao, Yuhan Shi, Wei Bai, Han Gao, Luyu
Qiu, Cong Wang, Yuanyuan Gao, Shenjia Zhang, Xun Xue, and Lei
Chen. A survey of data-driven and knowledge-aware explainable AI.
IEEE Transactions on Knowledge and Data Engineering, 34(1):29–49,
2022.

[165] Lars Lischke. Interacting with large high-resolution display work-
places. PhD thesis, University of Stuttgart, Germany, 2018.

References 259

[166] Lars Lischke, Sven Mayer, Andreas Preikschat, Markus Schweizer,
Ba Vu, Pawel W. Wozniak, and Niels Henze. Understanding large
display environments: Contextual inquiry in a control room. In
Regan L. Mandryk, Mark Hancock, Mark Perry, and Anna L. Cox,
editors, Extended Abstracts of the 2018 CHI Conference on Human
Factors in Computing Systems, CHI. ACM, 2018.

[167] Jon Loelinger and Matthew MacCullogh. Version Control with Git -
Powerful Tools and Techniques for Collaborative Software Develop-
ment: Covers GitHub, Second Edition. O’Reilly, 2012.

[168] María T. López, Antonio Fernández-Caballero, Miguel Angel
Fernández, and Ana E. Delgado García. Sensitivity from short-term
memory vs. stability from long-term memory in visual attention
method. In José Mira and José R. Álvarez, editors, Proceedings of
the Conference on Artificial Intelligence and Knowledge Engineer-
ing Applications: A Bioinspired Approach: First International Work-
Conference on the Interplay Between Natural and Artificial Compu-
tation, IWINAC, volume 3562 of Lecture Notes in Computer Science,
pages 448–458. Springer, 2005.

[169] Steven J. Lynden and Waran Taveekarn. Semi-automated augmentation
of pandas dataframes. In Ying Tan and Yuhui Shi, editors, Proceed-
ings of the 4th International Conference on Data Mining and Big
Data, DMBD, volume 1071 of Communications in Computer and
Information Science, pages 70–79. Springer, 2019.

[170] Jock D. Mackinlay. Automating the design of graphical presentations
of relational information. ACM Transactions on Graphics, TOG,
5(2):110–141, 1986.

[171] Soujanya Mantravadi, Andreas Dyrøy Jansson, and Charles Møller.
User-friendly MES interfaces: Recommendations for an ai-based
chatbot assistance in industry 4.0 shop floors. In Ngoc Thanh
Nguyen, Kietikul Jearanaitanakij, Ali Selamat, Bogdan Trawinski, and
Suphamit Chittayasothorn, editors, Proceedings of the 12th Asian Con-
ference on Intelligent Information and Database Systems - 12th Asian
Conference, ACIIDS, volume 12034 of Lecture Notes in Computer
Science, pages 189–201. Springer, 2020.

[172] Greice C. Mariano, Veda Adnani, Iman Kewalramani, Bo Wang,
Matthew J. Roorda, Jeremy Bowes, and Sara Diamond. Designing
a dashboard visualization tool for urban planners to assess the
completeness of streets. In Sakae Yamamoto and Hirohiko Mori,
editors, Proceedings of the 22nd International Conference on Human

260 References

Interface and the Management of Information, HIMI, volume 12184 of
Lecture Notes in Computer Science, pages 85–103. Springer, 2020.

[173] Kim Marriott, Falk Schreiber, Tim Dwyer, Karsten Klein,
Nathalie Henry Riche, Takayuki Itoh, Wolfgang Stuerzlinger,
and Bruce H. Thomas, editors. Immersive Analytics, volume 11190 of
Lecture Notes in Computer Science. Springer, 2018.

[174] Curtis E. Martin, J. O. Keller, Steven K. Rogers, and Matthew
Kabrisky. Color blindness and a color human visual system model.
IEEE Transactions on Systems, Man, and Cybernetics Part A,
30(4):494–500, 2000.

[175] Rod McBeth. A generalization of ackermann’s function. Mathematical
Logic Quarterly, 26(32-33):509–516, 1980.

[176] Craig S. Miller, Amber Settle, and John Lalor. Learning object-oriented
programming in python: Towards an inventory of difficulties and
testing pitfalls. In Amber Settle, Terry Steinbach, and Deborah
Boisvert, editors, Proceedings of the 16th Annual Conference on
Information Technology Education, SIGITE, pages 59–64. ACM, 2015.

[177] Kenneth Moreland. A survey of visualization pipelines. IEEE Trans-
actions on Visualization and Computer Graphics, 19(3):367–378,
2013.

[178] Tamara Munzner. Process and Pitfalls in Writing Information Visual-
ization Research Papers, pages 134–153. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[179] Tamara Munzner. Visualization Analysis and Design. A.K. Peters
visualization series. A K Peters, 2014.

[180] Kawa Nazemi and Jörn Kohlhammer. Visual variables in adaptive
visualizations. In Shlomo Berkovsky, Eelco Herder, Pasquale Lops,
and Olga C. Santos, editors, Late-Breaking Results, Project Papers
and Workshop Proceedings of the 21st Conference on User Model-
ing, Adaptation, and Personalization, volume 997 of CEUR Workshop
Proceedings. CEUR-WS.org, 2013.

[181] Lucy T. Nowell, Elizabeth G. Hetzler, and Ted Tanasse. Change
blindness in information visualization: A case study. In Keith Andrews,
Steven F. Roth, and Pak Chung Wong, editors, Proceedings of IEEE
Symposium on Information Visualization (INFOVIS), pages 15–22.
IEEE Computer Society, 2001.

[182] Paul W. Oman, Curtis R. Cook, and Murthi Nanja. Effects of
programming experience in debugging semantic errors. Journal of
Systems and Software, 9(3):197–207, 1989.

References 261

[183] Fatih Baha Omeroglu and Yueqing Li. Effects of background music
on visual short-term memory: A preliminary study. In Don Harris and
Wen-Chin Li, editors, Proceedings of the 19th International Confer-
ence on Engineering Psychology and Cognitive Ergonomics, EPCE,
volume 13307 of Lecture Notes in Computer Science, pages 85–96.
Springer, 2022.

[184] Jorge Piazentin Ono, Juliana Freire, Cláudio T. Silva, João Comba, and
Kelly P. Gaither. Interactive data visualization in jupyter notebooks.
Computing in Science and Engineering, 23(2):99–106, 2021.

[185] Elias Pampalk, Andreas Rauber, and Dieter Merkl. Using smoothed
data histograms for cluster visualization in self-organizing maps. In
José R. Dorronsoro, editor, Proceedings of International Conference
on Artificial Neural Networks, ICANN, volume 2415 of Lecture Notes
in Computer Science, pages 871–876. Springer, 2002.

[186] Deok Gun Park, Mohamed Suhail, Minsheng Zheng, Cody Dunne,
Eric D. Ragan, and Niklas Elmqvist. Storyfacets: A design study
on storytelling with visualizations for collaborative data analysis.
Information Visualization, 21(1):3–16, 2022.

[187] Hima Patel, Shanmukha C. Guttula, Ruhi Sharma Mittal, Naresh
Manwani, Laure Berti-Équille, and Abhijit Manatkar. Advances in
exploratory data analysis, visualisation and quality for data centric AI
systems. In Aidong Zhang and Huzefa Rangwala, editors, Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 4814–4815. ACM, 2022.

[188] Lawrence C. Paulson. Ackermann’s function is not primitive recursive.
Archive of Formal Proofs, 2022, 2022.

[189] Catherine Plaisant and Ben Shneiderman. Scheduling home
control devices: Design issues and usability evaluation of four
touchscreen interfaces. International Journal of Man-Machine
Studies, 36(3):375–393, 1992.

[190] Helen C. Purchase. Effective information visualisation: a study of
graph drawing aesthetics and algorithms. Interacting with Computers,
13(2):147–162, 2000.

[191] Helen C. Purchase. Metrics for graph drawing aesthetics. Journal of
Visual Languages and Computing, 13(5):501–516, 2002.

[192] Helen C. Purchase, Robert F. Cohen, and Murray I. James. Validating
graph drawing aesthetics. In Proceedings of the Symposium on Graph
Drawing, pages 435–446, 1995.

262 References

[193] Aung Pyae and Paul Scifleet. Investigating the role of user’s english
language proficiency in using a voice user interface: A case of google
home smart speaker. In Regan L. Mandryk, Stephen A. Brewster, Mark
Hancock, Geraldine Fitzpatrick, Anna L. Cox, Vassilis Kostakos, and
Mark Perry, editors, Proceedings of the extended abstracts of the CHI
Conference on Human Factors in Computing Systems. ACM, 2019.

[194] Aaron J. Quigley and Peter Eades. FADE: graph drawing, clustering,
and visual abstraction. In Joe Marks, editor, Proceedings of 8th Inter-
national Symposium on Graph Drawing, GD, volume 1984 of Lecture
Notes in Computer Science, pages 197–210. Springer, 2000.

[195] Ramana Rao and Stuart K. Card. The table lens: merging graphical and
symbolic representations in an interactive focus+context visualization
for tabular information. In Catherine Plaisant, editor, Proceedings of
the Conference on Human Factors in Computing Systems, CHI, page
222. ACM, 1994.

[196] Edward M. Reingold and John S. Tilford. Tidier drawings of trees.
IEEE Transactions on Software Engineering, 7(2):223–228, 1981.

[197] Donghao Ren, Xin Zhang, Zhenhuang Wang, Jing Li, and Xiaoru
Yuan. Weiboevents: A crowd sourcing weibo visual analytic system.
In Issei Fujishiro, Ulrik Brandes, Hans Hagen, and Shigeo Takahashi,
editors, Proceedings of the IEEE Pacific Visualization Symposium,
PacificVis, pages 330–334. IEEE Computer Society, 2014.

[198] Long Ren and Yun Chen. Influence of color perception on consumer
behavior. In Fiona Fui-Hoon Nah and Bo Sophia Xiao, editors, Pro-
ceedings of 5th International Conference on HCI in Business, Govern-
ment, and Organizations, HCIBGO, volume 10923 of Lecture Notes in
Computer Science, pages 413–421. Springer, 2018.

[199] Theresa-Marie Rhyne. Color matters for digital media & visualization.
In SIGGRAPH: Special Interest Group on Computer Graphics and
Interactive Techniques Conference, Courses, Virtual Event, pages
12:1–12:92. ACM, 2021.

[200] Jonathan C. Roberts. Guest editor’s introduction: special issue on
coordinated and multiple views in exploratory visualization. Informa-
tion Visualization, 2(4):199–200, 2003.

[201] Douglas Rolim, Jorge Silva, Thaís Batista, and Everton Cavalcante.
Web-based development and visualization dashboards for smart city
applications. In Mária Bieliková, Tommi Mikkonen, and Cesare
Pautasso, editors, Proceedings of tthe 20th International Conference on

References 263

Web Engineering, ICWE, volume 12128 of Lecture Notes in Computer
Science, pages 337–344. Springer, 2020.

[202] Ruth Rosenholtz, Yuanzhen Li, Jonathan Mansfield, and Zhenlan Jin.
Feature congestion: a measure of display clutter. In Gerrit C. van der
Veer and Carolyn Gale, editors, Proceedings of the Conference on
Human Factors in Computing Systems, CHI, pages 761–770. ACM,
2005.

[203] Matt Rounds, Chris Lucas, and Frank Keller. Inattentional blindness
in visual search. In Ashok K. Goel, Colleen M. Seifert, and
Christian Freksa, editors, Proceedings of the 41th Annual Meet-
ing of the Cognitive Science Society, CogSci, pages 2688–2694.
cognitivesciencesociety.org, 2019.

[204] Stuart H. Rubin, Thouraya Bouabana-Tebibel, Yasmin Hoadjli, and
Zahira Ghalem. Reusing the np-hard traveling-salesman problem to
demonstrate that p~np (invited paper). In Proceedings of the 17th IEEE
International Conference on Information Reuse and Integration, IRI,
pages 574–581. IEEE Computer Society, 2016.

[205] Dominik Sacha. Knowledge Generation in Visual Analytics: Integrat-
ing Human and Machine Intelligence for Exploration of Big Data. PhD
thesis, University of Konstanz, Germany, 2018.

[206] Seref Sagiroglu and Duygu Sinanc. Big data: A review. In
Geoffrey Charles Fox and Waleed W. Smari, editors, Proceedings of
International Conference on Collaboration Technologies and Systems,
CTS, pages 42–47. IEEE, 2013.

[207] William B. Sanders. Learning OOP with weakly typed web
programming languages: adding concrete strategies to a PHP strategy
design pattern. In William R. Cook, Siobhán Clarke, and Martin C.
Rinard, editors, Proceedings of the Companion to the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA, pages 189–192. ACM,
2010.

[208] Masataka Sassa and Ikuo Nakata. Time-optimal short-circuit
evaluation of boolean expressions. Information Processing Letters,
29(1):43–51, 1988.

[209] Makoto Sato and Yasuharu Koike. Playing rubik’s cube in mixed
reality. In Ryohei Nakatsu and Jun’ichi Hoshino, editors, Proceed-
ings of First International Workshop on Entertainment Computing:
Technologies and Applications, IFIP, volume 240 of IFIP Conference
Proceedings, pages 415–422. Kluwer, 2002.

264 References

[210] Hansjörg Schmauder, Michael Burch, Christoph Müller, and Daniel
Weiskopf. Distributed visual analytics on large-scale high-resolution
displays. In Proceedings of the Symposium on Big Data Visual Analyt-
ics, BDVA, pages 33–40. IEEE, 2015.

[211] Hans-Jörg Schulz. Treevis.net: A tree visualization reference. IEEE
Computer Graphics and Applications, 31(6):11–15, 2011.

[212] Hans-Jörg Schulz, Steffen Hadlak, and Heidrun Schumann. The design
space of implicit hierarchy visualization: A survey. IEEE Transactions
on Visualization and Computer Graphics, 17(4):393–411, 2011.

[213] Raquel Sebastião, João Gama, and Teresa Mendonça. Comparing
data distribution using fading histograms. In Torsten Schaub, Gerhard
Friedrich, and Barry O’Sullivan, editors, Proceedings of the 21st
European Conference on Artificial Intelligence, ECAI and Including
Prestigious Applications of Intelligent Systems, PAIS, volume 263 of
Frontiers in Artificial Intelligence and Applications, pages 1095–1096.
IOS Press, 2014.

[214] Michael Sedlmair, Petra Isenberg, Dominikus Baur, and Andreas
Butz. Information visualization evaluation in large companies:
Challenges, experiences and recommendations. Information Visualiza-
tion, 10(3):248–266, 2011.

[215] Ben Shneiderman. Tree visualization with tree-maps: 2-d space-filling
approach. ACM Transactions on Graphics, 11(1):92–99, 1992.

[216] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of the IEEE Symposium on
Visual Languages, pages 336–343. IEEE Computer Society, 1996.

[217] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs,
and Niklas Elmqvist. Designing the User Interface - Strategies for
Effective Human-Computer Interaction, 6th Edition. Pearson, 2016.

[218] Daniel J. Simons and Christopher F. Chabris. Gorillas in our midst:
Sustained inattentional blindness for dynamic events. Perception,
28(9):1059–1074, 1999.

[219] Ashok Sivaji, Søren Nielsen, and Torkil Clemmensen. A textual
feedback tool for empowering participants in usability and UX
evaluations. International Journal of Human-Computer Interaction,
33(5):357–370, 2017.

[220] Samuel Thomas Smith, James Michael Hogan, Xin-Yi Chua, Margot
Brereton, Daniel M. Johnson, and Markus Rittenbruch. Iterative design

References 265

and evaluation of regulatory network visualisation at scale. In Proceed-
ings of the 13th IEEE International Conference on e-Science, pages
354–363. IEEE Computer Society, 2017.

[221] Laura South, David Saffo, Olga Vitek, Cody Dunne, and Michelle A.
Borkin. Effective use of likert scales in visualization evaluations: A
systematic review. Computer Graphics Forum, 41(3):43–55, 2022.

[222] Robert Spence. Information Visualization: Design for Interaction.
Pearson/Prentice Hall, 2 edition, 2007.

[223] Leonhard F. Spiegelberg, Rahul Yesantharao, Malte Schwarzkopf, and
Tim Kraska. Tuplex: Data science in python at native code speed.
In Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava,
editors, Proceedings of the International Conference on Management
of Data, Virtual Event, SIGMOD, pages 1718–1731. ACM, 2021.

[224] John T. Stasko, Richard Catrambone, Mark Guzdial, and Kevin
McDonald. An evaluation of space-filling information visualizations
for depicting hierarchical structures. International Journal of Human
Computer Studies, 53(5):663–694, 2000.

[225] Stuart G. Stubblebine. Regular expression pocket reference - regular
expressions for Perl, Ruby, PHP, Python, C, Java, and .NET (2. ed.).
O’Reilly, 2007.

[226] Yasuhiro Sugiyama. A highly extensible graphical user interface in
a software development environment. In Michael J. Smith, Gavriel
Salvendy, and Richard J. Koubek, editors, Proceedings of the 7th Inter-
national Conference on Human-Computer Interaction, (HCI Interna-
tional), pages 327–330. Elsevier, 1997.

[227] Matús Sulír and Jaroslav Porubän. Source code documentation
generation using program execution. Information, 8(4):148, 2017.

[228] Erxin Sun, Zongjuan Chen, Sixing Li, and Xiaoxiao Li. Real-time
data visualization of intelligent networked vehicles. In Proceedings of
the International Conference on Computing, Networks and Internet of
Things, pages 180–184. ACM, 2020.

[229] Anne Treisman. Preattentive processing in vision. Computer Vision,
Graphics, and Image Processing, 31(2):156–177, 1985.

[230] Lesley Trenner. How to win friends and influence people: definitions
of user-friendliness in interactive computer systems. Journal of Infor-
mation Science, 13(2):99–107, 1987.

[231] Eduard Tudoreanu. Designing effective program visualization tools for
reducing user’s cognitive effort. In Stephan Diehl, John T. Stasko,

266 References

and Stephen N. Spencer, editors, Proceedings of ACM Symposium on
Software Visualization, pages 105–114. ACM, 2003.

[232] Edward Rolf Tufte. The visual display of quantitative information.
Graphics Press, 1992.

[233] Barbara Tversky, Julie Bauer Morrison, and Mireille Bétrancourt.
Animation: can it facilitate? International Journal of Human Computer
Studies, 57(4):247–262, 2002.

[234] Franck van Breugel. Comparative metric semantics of programming
languages - nondeterminism and recursion. Progress in theoretical
computer science. Birkhäuser, 1998.

[235] Laurens van der Maaten and Geoffrey Hinton. Visualizing
high-dimensional data using t-SNE. Journal of Machine Learning
Research, 9:2579–2605, 2008.

[236] Guido van Rossum. Scripting the web with python. World Wide Web
Journal, 2:97–120, 1997.

[237] Jarke J. van Wijk. The value of visualization. In Proceedings of 16th
IEEE Visualization Conference, IEEE, pages 79–86. IEEE Computer
Society, 2005.

[238] Corinna Vehlow, Fabian Beck, and Daniel Weiskopf. Visualizing
group structures in graphs: A survey. Computer Graphics Forum,
36(6):201–225, 2017.

[239] Boris M. Velichkovsky, Andreas Sprenger, and Pieter Unema. Towards
gaze-mediated interaction: Collecting solutions of the "midas touch
problem". In Steve Howard, Judy Hammond, and Gitte Lindgaard,
editors, Proceedings of the International Conference on Human-
Computer Interaction, INTERACT, volume 96, pages 509–516.
Chapman & Hall, 1997.

[240] Spyros Vosinakis and George Anastassakis. Touch your own device!
A covid-safe alternative to multi-touch interactions with public
touchscreens. In Proceedings of the 1st International Conference of
the ACM Greek SIGCHI Chapter, pages 14:1–14:6. ACM, 2021.

[241] Marion Walton, Vera Vukovic, and Gary Marsden. ’visual literacy’
as challenge to the internationalisation of interfaces: a study of south
african student web users. In Loren G. Terveen and Dennis R. Wixon,
editors, Proceedings of the extended abstracts of the Conference on
Human Factors in Computing Systems, CHI, pages 530–531. ACM,
2002.

[242] Yunzhe Wang, George Baciu, and Chenhui Li. Smooth animation of
structure evolution in time-varying graphs with pattern matching. In

References 267

Koji Koyamada and Puripant Ruchikachorn, editors, Proceedings of
the Symposium on Visualization, SIGGRAPH ASIA, pages 12:1–12:8.
ACM, 2017.

[243] Matthew O. Ward. Linking and brushing. In Ling Liu and M. Tamer
Özsu, editors, Encyclopedia of Database Systems, Second Edition.
Springer, 2018.

[244] Colin Ware. Perception & data visualization: The foundations of
experimental semiotics. In Wayne A. Davis, Kellogg S. Booth, and
Alain Fournier, editors, Proceedings of the Graphics Interface Con-
ference, pages 92–98. Canadian Human-Computer Communications
Society, 1998.

[245] Colin Ware. Information Visualization: Perception for Design. Morgan
Kaufmann, 2004.

[246] Colin Ware. Visual Thinking: for Design. Morgan Kaufmann Series in
Interactive Technologies, Paperback, 2008.

[247] Ross T. Whitaker and Ingrid Hotz. Transformations, mappings, and
data summaries. In Min Chen, Helwig Hauser, Penny Rheingans, and
Gerik Scheuermann, editors, Foundations of Data Visualization, pages
121–157. Springer, 2020.

[248] Roland Wiese, Markus Eiglsperger, and Michael Kaufmann. yFiles:
Visualization and automatic layout of graphs. In Petra Mutzel, Michael
Jünger, and Sebastian Leipert, editors, Proceedings of 9th International
Symposium on Graph Drawing, GD, volume 2265 of Lecture Notes in
Computer Science, pages 453–454. Springer, 2001.

[249] Rand R. Wilcox. Robust multivariate regression when there is
heteroscedasticity. Communications in Statistics - Simulation and
Computation, 38(1):1–13, 2009.

[250] Christoph Wimmer, Alex Untertrifaller, and Thomas Grechenig.
SketchingInterfaces: A tool for automatically generating high-fidelity
user interface mockups from hand-drawn sketches. In Naseem
Ahmadpour, Tuck Wah Leong, Bernd Ploderer, Callum Parker, Sarah
Webber, Diego Muñoz, Lian Loke, and Martin Tomitsch, editors,
Proceedings of the 32nd Australian Conference on Human-Computer-
Interaction, OzCHI, pages 538–545. ACM, 2020.

[251] Pak Chung Wong, Han-Wei Shen, Christopher R. Johnson, Chaomei
Chen, and Robert B. Ross. The top 10 challenges in extreme-scale
visual analytics. IEEE Computer Graphics and Applications,
32(4):63–67, 2012.

268 References

[252] Pak Chung Wong and Jim Thomas. Visual analytics. IEEE Computer
Graphics and Applications, 24(5):20–21, 2004.

[253] Liwei Wu, Fei Li, Youhua Wu, and Tao Zheng. GGF: A graph-based
method for programming language syntax error correction. In Proceed-
ings of the 28th International Conference on Program Comprehension,
ICPC, pages 139–148. ACM, 2020.

[254] Yiqun Xie, Shashi Shekhar, and Yan Li. Statistically-robust clustering
techniques for mapping spatial hotspots: A survey. ACM Computing
Surveys, 55(2):36:1–36:38, 2023.

[255] Sophia Yang, Marc Skov Madsen, and James A. Bednar. Holoviz:
Visualization and interactive dashboards in python. In Aidong Zhang
and Huzefa Rangwala, editors, Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD, pages
4846–4847. ACM, 2022.

[256] Alfred L. Yarbus. Eye Movements and Vision. Springer, 1967.
[257] Yucong Chris Ye, Franz Sauer, Kwan-Liu Ma, Aditya Konduri,

and Jacqueline Chen. A user-centered design study in scientific
visualization targeting domain experts. IEEE Transactions on Visual-
ization and Computer Graphics, 26(6):2192–2203, 2020.

[258] Ji Soo Yi, Youn ah Kang, John T. Stasko, and Julie A. Jacko. Toward
a deeper understanding of the role of interaction in information
visualization. IEEE Transaction on Visualization and Computer
Graphics, 13(6):1224–1231, 2007.

[259] Qi Zhang. Medical data and mathematically modeled implicit surface
real-rime visualization in web browsers. International Journal of
Image and Graphics, 22(4):2250027:1–2250027:29, 2022.

[260] Zuyao Zhang and Yuan Zhu. Research on users’ and designers’ product
color perception. In Yongchuan Tang and Jonathan Lawry, editors,
Proceedings of the Second International Symposium on Computational
Intelligence and Design, ISCID, pages 264–267. IEEE Computer
Society, 2009.

Index

* pattern, 143
.css file extension, 96
.ipynb file extension, 84
1D, 19
1D list, 109
2D, 19
2D diagram, 57
3D, 19
3D diagram, 57
8 golden rules, 59

A
abstracting, 64
academic community, 23
accuracy, 29
Ackermann function, 148
action, 59
adjacency list, 43
adjacency matrix, 42, 91
Adobe Illustrator, 62
Adobe Photoshop, 62
Adobe XD, 62
advanced algorithm, 25
aesthetic graph drawing criteria, 42
aesthetics, 14, 53
AFFINITY Designer, 62
aggregated value, 53
aggregation step, 37
aha effect, 55
algorithm, 4, 6, 10, 27, 36, 58, 141
algorithm performance, 5

algorithmic analysis, 23, 24
algorithmic approach, 3
algorithmic efficiency, 92
algorithmic runtime, 23
algorithmic scalability, 229
algorithmic transformation, 26
alphabet, 126
Anaconda, 76, 82
angle, 28, 40
animal movement, 49
animated diagram, 11, 57, 78
animated link, 38
animation, 33, 39, 57
anomaly, 1, 13–15, 22, 25, 26, 36
anonymous function, 146, 150
app, 168
app styling, 173
app.layout, 76
appearance, 14
appending data, 155
application context, 57
application domain, 6
area, 28, 40
arithmetic expression, 109–111
arithmetic operation, 17
arithmetic operator, 111
artificial data, 168
ASCII, 128, 153
ASCII code, 126, 128
ASCII table, 126–128
aspect-oriented paradigm, 75

269

270 Index

association rule, 3
Atom, 86
attention, 32
attribute, 18, 46, 157
attribute correlation, 171
augmented reality, 63
awareness, 30
axis, 54
Axure, 62

B
background, 180
background image, 96
balanced hierarchy, 46
bar chart, 10, 28, 38, 78, 164, 186,

195
baseline adjustment feature, 66
basic data type, 118
big data, 21, 22, 28, 36, 228
binary, 119
binary data, 152
binary digit, 116
binary file, 90
binary operator, 111
binary relation, 18
binary tree, 147
bird movement, 49
bit, 116
bitwise expression, 116
bitwise operator, 116
bivariate data, 16, 46, 90, 171
black box, 37
blood pressure, 4
blueprint, 157
body motion, 63
body-related issue, 4
Bokeh, 8, 15, 80
Boolean, 118, 120
Boolean expression, 109, 114, 133

Boolean operator, 109, 113
Boolean value, 111, 113
bootstrap, 163, 170, 173, 174, 183,

196
border, 9, 59
border size, 95, 180
box size, 196
bracket, 121
bracket match checking, 86
braille, 96
brain, 31
branch, 132
branching factor, 45
break, 138
break up criterion, 139
brushing, 71
brushing and linking, 70, 164, 185,

194
buffering problem, 154
bug tracking, 87
built-in method, 127
button, 14, 60

C
C, 8
C++, 8, 78
callback, 74, 88, 98, 167, 183
callback mechanism, 74, 98, 164, 166
capital letter, 125
carriage return, 120
cascading effect, 96
cascading style sheet (CSS), 95
cascading style sheets, 177
cascading style sheets (CSS), 74, 96
case, 18, 46, 133
categorical, 46
categorical attribute, 38
categorical data, 17, 41, 90
category, 17, 41

Index 271

ceil, 173
chained comparison, 113
chained expression, 147
change blindness, 32
change log, 87
character, 118, 126
chart, 1, 2
chart junk, 3, 55
child class, 157, 161
child node, 45
chr(), 128
Cinema 4D, 62
circle, 42
circle sector, 40
circular shape, 38
class, 41, 118, 120, 157
class attribute, 158
class browser, 86
class merging, 161
classification task, 51
className, 198
cleaned data, 4
cluster, 3, 42
cluster data generation, 198
cluster structure, 37
cluster visualization, 37
clustering, 25
clustering algorithm, 7, 37, 41
code clone detection, 86
code comment, 132
code completion, 86
code formatting, 86
code quality, 86
code readability, 73, 75
code sharing, 86
cognition, 3, 31
cognitive effort, 57, 59
cognitive issue, 30
cognitive process, 104

cognitive science, 28
cognitive strength, 7
collaborative development, 83, 87
collaborative interaction, 63, 69
collaborative software development,

83
color, 7, 28, 55, 95, 96, 164
color blindness, 55
color coded cell, 43
color coding, 35, 59
color parameter, 163
color pattern, 7
color perception, 30, 55
color scale, 64
color vision deficiency, 55
column, 46
comb, 173
comma-separated values, 3, 21, 151,

154
command-line interface, 83
comment, 131
communication, 49
company structure, 44
comparative user study, 29, 40
comparison task, 27, 39, 54, 57
compiler, 86, 135
completion time, 4
complex data, 1, 16
complex data type, 90
complex number, 118
composite data type, 120
compound expression, 115
computation routine, 27
computer memory, 119
computer monitor, 69
computer mouse, 63
computer program, 109, 110
computer science, 2
conda, 76

272 Index

condition, 18, 66, 132
conditional, 109
conditional expression, 133
confidence level, 4
confounding variable, 35
connecting, 64
consistency, 59, 62
constant, 125
containment hierarchy, 18, 44
context, 54
contextual information, 179
continue, 138
control, 60
control flow, 109, 133
controlled user study, 14, 35
correlation, 1, 3, 7, 14, 15, 25, 26, 36
correlation behavior, 46
correlation task, 7, 46
counting task, 7
Covid-19, 19
Covid-19 pandemic, 68
critical program code, 136
crowd sourcing, 68
crowdsourcing experiment, 104
CSS, 14, 88, 95, 96, 164, 177, 183,

196
CSS file, 177
CSV, 21
CSV format, 154
csv format, 3
CUDA, 8
culture, 73, 101
curve, 19
curved edge, 42
curved link, 38

D
D3, 8
daily evolution pattern, 37

daily value, 37
Dash, 15, 73, 74, 76, 88, 166
Dash app, 102
dash bootstrap component, 191
Dash Core Component, 88
dash core component, 93, 164
Dash core components, 74, 166
Dash HTML component, 76, 88, 95
Dash HTML components, 74, 166
dashboard, 1, 10, 13, 16, 61, 74, 82,

163
dashboard design, 2, 94, 165
dashboard evaluation, 129
dashboard interaction, 36
dashboard layout, 96, 103, 171, 183
dashboard styling, 173
data, 1, 15, 26, 90, 151
data access, 21
data aggregation, 25, 53, 91
data analysis, 3, 13, 15
data analytics, 14
data attachment, 46
data base, 1
data chunk, 20
data cleaning, 23
data clustering, 91
data complexity, 22
data composition, 19
data context, 54
data distribution, 164
data dynamics, 20
data exploration, 37, 109
data exploration process, 27
data exploration task, 6
data feature, 2
data file, 20
data flood, 15
data format, 1, 21, 37, 90
data gap, 24, 53, 91

Index 273

data handling, 14, 15, 22, 70, 81
data interpretation, 53
data level, 4
data linking, 22
data mining, 3, 25
data misinterpretation, 57
data noise, 23
data object, 18
data parsing, 4, 20, 74, 90, 151, 156,

167
data pattern, 5, 25, 55, 91
data preprocessing, 23, 91
data processing, 37
data projection, 91
data quality, 23
data reading, 4, 20, 74, 90, 151, 153,

156, 167
data restructuring, 91
data sampling, 152
data scalability, 228
data science, 1, 2, 28, 75
data scientist, 10
data size, 22
data source, 3
data storage, 22
data structure, 70, 88, 90, 109
data summary, 53
data transformation, 22, 24, 25, 37,

74, 91
data type, 1, 10, 16, 17, 26, 46, 75,

90, 118
data type conversion, 123
data upload, 14
data validity, 23
data value, 23
data variety, 23
data velocity, 23
data visualization, 2, 10
data visualization tool, 73

data volume, 23
data writing, 151
data-to-ink ratio, 57
data-to-visualization mapping, 3, 48
database, 16, 20, 151
dataset, 1, 15, 38
dataset size, 5
date picker, 93, 166
debugger, 86
debugging, 82
decimal, 119
decimal point, 119
decimal value, 116
decision making, 6, 30, 36, 62
decreasing behavior, 39
deep learning, 25, 51, 67
def, 142
definite iteration, 137
definite loop, 137
degradation of performance, 56
degree of fidelity, 61
degree of flexibility, 62, 165
dendrogram, 10
density heatmap, 164
dependent variable, 4, 29, 35
deployment, 73, 101
design, 1, 2, 16
design decision, 16
design flaw, 2, 14, 30, 35, 104
design issues, 214
design phase, 16, 73
design principle, 3
design process, 5, 61
design rule, 30, 73
design tool, 62
designer, 61
detail, 66
details on demand, 57
developer activity, 88

274 Index

development stage, 5
diagram, 1, 2, 78, 93
diagram input, 185
dialogue, 60, 66
dialogue group, 60
dictionary, 109, 120, 122
Dijkstra algorithm, 37
dimensionality reduction, 25
directed graph, 18
disabled user, 5
disorganization, 56
display, 62, 63, 68, 70, 196
display technology, 4
dissemination, 10, 13, 14, 54
distance, 9
distributed data source, 22
div element, 183
division element (div), 168
DNA sequence, 50
DNA string, 126
document feature, 94
domain expert, 5, 101
drag and drop interface, 9
drop-down menu, 166, 171
dynamic data, 1, 3, 16, 20, 39, 57, 90,

151
dynamic dataset, 37
dynamic layout, 52
dynamic scene, 35
dynamic stimulus, 29
dynamic story, 11
dynamic type system, 75
dynamic user interface, 60

E
edge, 42
edge bundling, 48
editor, 86
EEG, 4

eight golden rules, 59, 73
elif, 134
else branch, 133
Emacs, 86
empty list, 120
encapsulation, 145, 157, 160
encoding scheme, 128
entry, 46
error database, 87
error highlighting, 86
error message, 59
error prevention, 60
error rate, 4, 29, 35, 59
error search image, 32
error-prone data, 3
escape sequence, 120
estimation task, 7
evaluation precedence, 112
evaluation priority, 112
exact linear behavior, 46
Excel, 19
Excel table, 19, 46, 90, 154
exception, 133
experience, 31, 33, 34
experience level, 6, 36, 63
expert, 2, 36, 60
explainable artificial intelligence, 38
exploration process, 65
exploration strategy, 177
exploratory data analysis, 79
exploring, 64
exponent notation, 119
expression, 110, 111
external CSS, 96, 164, 177
external CSS file, 179
external stylesheet, 183
eye movement, 35, 59, 105
eye movement data, 8, 19, 29
eye tracking, 4, 8, 29, 67, 105

Index 275

F
factorial, 173
False, 113, 118, 120
family hierarchy, 44
feedback form, 104
Fibonacci function, 147
Figma, 62
file creation, 155
file object, 153
file operation, 155
file overwriting, 155
file path, 153
file system, 18, 21, 44
file system browser, 86
file writing, 155
filter, 7, 192
filter technique, 22
filtered view, 4
filtering, 64
Fireworks, 62
Flask, 15, 76, 102
Flask server, 77
Flask-based application, 102
flexibility, 52
floating point, 118
floating point number, 113
floor, 173
focus, 179
focus-and-context, 57, 79
follow-up experiment, 105
font, 9
font face, 59
font family, 196
font size, 59, 94, 96, 180
font style, 55
font type, 59
for loop, 137
formatting specification, 96
fraud detection, 59

function, 141
function call, 142
function definition, 142
function nesting, 144
functional paradigm, 75, 109
functional programming, 73

G
gaze, 63
gaze-based interaction, 62, 66
geographic map, 10, 19, 81
geographic region, 19, 44
geography, 81
geoplotlib, 80
Gestalt law, 34, 41, 96
Gestalt principle, 34
Gestalt theory, 34, 59
gesture, 59, 63
gesture interaction, 62
gesture-based system, 66
ggplot, 80
ggplot2, 81
GitHub, 83, 87
GitHub integration, 86
global variable, 125, 145
glyph, 47
glyph-based representation, 47
GNU Emacs, 86
go object, 164
Google Chrome, 103
Grafana, 14
granularity level, 57, 151
graph, 18, 37, 39, 42
graph data, 151
graph drawing, 42
graph object, 185
graph readability, 42
graph symmetry, 42
graph theory, 42

276 Index

graph vertex, 42
graph visualization, 42
graphical user interface, 30, 59, 61
graphics library, 75, 80, 88
graphics module, 167
Gravit Designer, 62
gray out, 60, 179
grid, 196
group, 41
group of people, 25
group overlap, 41
group structure, 37, 41
grouping effect, 41
growing behavior, 39
GUI, 59
GUI widget toolkit, 9
guideline, 39
guiding line, 54
Guido van Rossum, 75

H
H1 font size, 168
hand drawing, 52
hand-drawn mockup, 165, 166
hand-drawn user interface, 51
hardware-accelerated, 9
heading, 94
headline, 94
heatmap, 194, 211
height, 38
helpers module, 198
Hermann grid illusion, 34
Heroku, 15, 101
Heroku server, 102
heterogeneous data, 16, 22, 36, 228
heteroscedastic behavior, 46
heuristic approach, 25, 37
hexadecimal, 119
hey siri, 67

hierarchical data, 18, 21, 44, 90, 151
hierarchical granularity, 46
hierarchy, 18, 39, 44, 161
hierarchy depth, 45
hierarchy level, 18, 45
high-level interaction, 65
high-level language, 73
high-level programming language,

75
higher-order function, 146, 149
highlighting, 179
histogram, 10, 47, 81, 163, 164, 168,

171
history log, 86
homogeneous data, 16, 36
homoscedastic behavior, 46
horizontal line, 94
hourly value, 37
HTML, 14, 76, 81, 94, 96
HTML command, 167
HTML division element, 183
HTML feature, 94
HTML tag, 94
human eye, 20
human intervention, 24
human observer, 38
human perception, 28
human user, 1, 2, 28, 35, 36
human users, 5
human’s visual system, 37
human-computer interaction, 14, 28,

66
human-machine interplay, 36
hybrid graph visualization, 43
hybrid hierarchy visualization, 45
hybrid visualization, 43
HyperText Markup Language, 94
hypervariate data, 39
hypothesis, 4, 5, 16, 24, 27

Index 277

I
IDE, 109, 221
if statement, 133
image file, 151
imaginary part, 119
immersive analytics, 63
immutable, 121
implementation, 16
implementation challenges, 219
implementation perspective, 1
implementation phase, 5, 16, 61, 73
in-built data type, 120
inattentional blindness, 32
increment, 138
indefinite iteration, 137, 139
indefinite loop, 137
indentation, 75
indentation rule, 73
indentation support, 86
independent variable, 29, 35
independent-dependent correlation, 35
index, 120
industrial community, 23
inefficient algorithm, 37
infographic, 57
information communication, 27
information exchange, 42
information overload, 59
information overplotting, 10
information processing, 31
information visualization, 30
inheritance, 157, 161
inheritance principle, 157
init function, 158
ink, 57
Inkscape, 62
inline CSS, 96, 164, 177
inner node, 18, 45
input channel, 66

input dataset, 37
Input module, 166
input option, 93
input parameter, 6, 141, 142
input parameters, 27
input value, 27
input(), 152
input-output linking, 98
input-output mechanism, 22
insight, 1, 3, 13, 26, 31
installation, 82
instance, 118, 120, 157, 158
instance attribute, 158
instance attribute value, 160
instance method, 160
integer, 118
integrated development environment,

83, 86
integrated development environment

(IDE), 74, 82
interaction, 58, 59, 63, 68, 166
interaction category, 64
interaction chain, 65
interaction hierarchy, 65
interaction history, 65
interaction modality, 63, 66
interaction process, 65
interaction sequence, 65
interaction technique, 1, 10, 14, 16,

29, 51, 61, 78, 163
interactions, 4
interactive dashboard, 73
interactive mockup, 61
interactive mode, 82, 83
interactive response, 14
interactive responsiveness, 24, 64, 70
interactive scene, 35
interactive visualization, 26, 30, 35
interactive visualization tool, 5

278 Index

interactive web application, 9
interdisciplinary approach, 28
interdisciplinary field, 14
interface component, 52, 61
interface design, 2, 14, 51, 163
interface design challenge, 215
interface design rule, 51
internal CSS, 96, 177
international user, 101, 103
internet access, 101
internet connection, 10, 15, 21
interpolation, 24, 91
interpreter, 86
interpreter mode, 82
intersection, 122
intersection cell, 46
interview, 59
InVision, 62
iterative recursion, 148

J
Java, 8, 75, 78, 118
JavaScript, 8, 15, 76, 81, 95
John McCarthy, 115
joystick, 66
Julia, 15, 75
Jupyter Notebook, 74, 77, 84, 86, 109
Jupyter Notebook mode, 82
Justinmind, 62

K
key-value pair, 122
keyboard, 63, 66
keyboard interaction, 62
knowledge, 1, 31
knowledge acquisition, 31

L
label, 19, 54, 59, 183

label id, 183
lambda expression, 146, 150
language, 73, 101
laptop, 60, 96
Large-scale display, 69
large-scale display, 63, 69, 96
Lato, 196
lattice graphics, 9
law of closure, 34
law of common fate, 34
law of continuity, 34
law of distance, 96
law of good form, 34
law of proximity, 34, 41, 59
law of similarity, 34, 41, 59, 96
law of symmetry, 34
layman, 5
layout, 2, 14, 58, 61, 163
leaf node, 18, 45
league system, 44
left to right evaluation, 117
legend, 55
len(), 130
length, 35, 40
less is more rule, 57
level of fidelity, 61
LiClipse, 86
lie factor, 3, 48, 55
Likert scale, 104
line break, 94
line crossing, 47, 48, 56
line iterator, 153
line segment, 48
line-based diagram, 56
line-based representation, 48
link, 94
link bend, 42
link crossing, 39
link crossing minimization, 42

Index 279

link intersection, 42
link length minimization, 42
link-link overlap, 42
linking, 10, 14, 71
Linux, 82, 223
list, 94, 120, 138
local data, 90
local file, 1, 21
local maximum, 37
local minimum, 25, 37
local tool version, 21
local user, 101
local variable, 125, 145
localhost, 77, 102
logic paradigm, 75
logical expression, 114
logical operator, 113
login, 102, 152
long-term memory, 31
longitudinal study, 36
loop, 109, 137
Lucidchart, 62

M
MacOS, 82, 223
malware detection, 59
map, 19
margin, 9, 95, 196
Marvel, 62
matching, 133
math module, 173
mathematical expression, 111
mathematical function, 19, 167
MatLink, 43
matplotlib, 8, 80
matrix, 25, 91
matrix-like format, 151
maximum, 18
maximum finding algorithm, 27

maximum search, 27
measurement error, 24
median, 53
medical application, 59
medium-scale display, 63, 69, 96
memory address, 159
memory consumption, 146
mental action, 31
mental map, 53, 59, 72
mental map preservation, 59
menu, 93
meta character, 130
meta data, 54
method, 157, 160
Microsoft Edge, 103
Microsoft Power BI, 14
Microsoft Visio, 62
Midas Touch problem, 67
minimalism, 57
minimalistic design, 57
minimum, 18
minimum linear arrangement, 26
MinLA problem, 26
Miro Moqups, 62
misinterpretation, 35
missing data, 3, 23
mixed expression, 117
mixed reality, 63
mobile phone, 60, 67, 68
MockFlow, 62
Mockplus, 62
mockup, 52, 59, 61
model, 25, 38
model-view-controller, 71
modern web browser, 9
motion-based system, 66
mouse, 63, 66
mouse click, 104
mouse cursor, 67, 104

280 Index

mouse interaction, 62
mouse movement, 104
mouse-based user interface, 66
movement, 35
movement behavior, 48
Mozilla Firefox, 103
multi-stage model, 3
multimodal, 66
multiple coordinated view, 52
multiple coordinated views, 10, 13,

31, 70
multiple relation, 18
multiple sequence alignment, 50
multivariate data, 16, 18, 21, 39, 46,

90, 151
mutable, 121

N
n-dimensional list, 121
named function, 151
naming convention, 125
national user, 101
NCBI taxonomy, 21
negative correlation, 46, 171
nested parentheses format, 45
network, 18, 37, 39
network data, 151
network visualization, 42
neural network, 25, 38, 49, 51
new line, 120
Newick data format, 45
Newick file format, 21
Newick format, 151
no-goes, 53, 55
node-link diagram, 38, 42
node-link overlap, 42
node-node overlap, 42
NodeTrix, 43
nominal data, 90

non-expert, 2, 36, 60
Notepad, 86
NP-hard problem, 26, 37
numeric data type, 118
numeric scale, 164
numerical, 46
numerical value, 17, 54, 111
numpy, 81
numpy module, 166

O
object, 118, 120, 157–159
object state, 157, 158, 160
object-of-interest, 7
object-oriented paradigm, 75, 109,

157
object-oriented programming, 73, 118
observation, 18, 46
occlusion effect, 48
octal, 119
offline data analysis, 20
old user, 36, 60
Omnigraffle, 62
one-dimensional, 19
one-dimensional list, 109, 121
online accessibility, 234
online data analysis, 20
online user evaluation, 105
open source, 76, 87
open(), 153
open-source library, 9
Opera, 103
operand, 111
operating system, 82, 86, 223
operator, 110, 111
operator precedence, 110
optical illusion, 34
optimal linear arrangement, 26
optimal solution, 25, 37

Index 281

optimum, 37
ord(), 128
order, 17
ordering, 25
ordinal data, 17, 41, 90
orientation, 179
original data, 20, 23
orthogonal link, 38, 42
orthogonality, 42
outlier, 13, 14
output channel, 66
output device, 62
Output module, 166
output option, 93
output parameter, 27, 141, 142
overlap, 48, 56
overlap minimization, 42
overview, 179
overview first, 57
overview-and-detail, 57, 79

P
padding, 95, 196
Pandas, 154
pandas, 81
Pandas DataFrame, 90, 174, 183
Pandas Dataframe, 21
Pandas dataframe, 154
pandas module, 166
panning, 66
paragraph, 94
parallel coordinate plot, 47
parallelism, 35
parameter, 2
parameter adaptation, 58
parameter order, 143
parent class, 157, 161
parent node, 45
parent-child relationship, 18, 21, 45

part-to-whole relationship, 40
partial edge, 42
partial link, 38
Pascal, 75
pass, 134, 139
password, 102, 152
path, 42
pattern, 1, 13–15, 22, 26, 31
pattern detection, 3, 7, 27, 53
pattern finding, 36, 40
pattern identification task, 7
pattern matching, 134
perception, 3, 28, 30
perceptual ability, 5, 27, 28
perceptual disability, 63
perceptual issue, 30
perceptual scalability, 231
perceptual strength, 1, 7, 36
performance, 59
performance issue, 22
periodic time, 20
personal details, 104
perspective distortion, 57
physical disability, 63
physical unit, 54
physically disabled, 60
physiological measure, 4, 29, 35, 59
pie chart, 10, 28, 40, 81
pilot study, 105
pixel-based representation, 50
pixel-based visualization, 43
pixel-sized objects, 67
plagiarism, 50
plot, 1, 2
Plotly, 8, 15, 73, 74, 76, 77, 88
Plotly diagram, 74, 97, 164
Plotly Express, 93, 97
Plotly Express module, 166
Plotly go, 185, 187

282 Index

Plotly go object, 185
Plotly template, 164, 177, 178, 183
Plotly theme, 177
Plotly.express, 78
point cloud, 164, 186, 194
point cloud selection, 186
pointing device, 66
polyline, 47
position, 28, 29, 38, 40
position in a common scale, 28, 38
positive correlation, 46, 171
post process, 20
powershell, 82, 83
powerwall, 60, 63, 69, 96
pre-attentive processing, 31
precedence, 117
precomputation, 92
prediction task, 51
prefix, 119
preprocessed data, 2, 3
preprocessing, 26
primitive data, 1, 16
primitive recursive, 148
principle of emergence, 34
principle of encapsulation, 157
principle of grouping, 34
principle of indentation, 45
principle of invariance, 34
principle of linking, 45
principle of multistability, 34
principle of nesting, 45
principle of reification, 34
principle of stacking, 45
principle of subordination, 44
procedural paradigm, 75
processed data, 3, 13
profiler, 86
program documentation, 131
program execution, 135

program translation phase, 135
programming, 2, 8
programming environment, 82
programming experience, 13
programming language, 8
programming library, 75
programming paradigm, 73, 75
progress bar, 60
Proto.io, 62
prototype, 53, 61
prototyping, 52
public transport map, 19
PyCharm, 82, 84, 86, 109
Python, 1, 8, 14, 15, 21, 73–76, 88,

109
Python 2.0, 75
Python 3.0, 75
Python code, 1
Python program, 82
Python programming, 110
pythonanywhere, 15

Q
QlikSense, 14
qualitative feedback, 59, 104
quantitative data, 17, 38, 40, 90
quantitative value, 28, 38

R
R, 8, 15, 75
R Shiny, 8
radial visualization, 40
RadioItems component, 199
rainbow colormap, 55
random data generation, 198
randomly generated data, 164
range() function, 138
rapid pattern detection, 1
raw data, 2, 3, 13

Index 283

re, 130
React, 15, 76
read(), 153
reading direction, 101, 103
real number, 119
real part, 119
real-time analysis, 23
real-time data, 1, 3, 21, 64, 90, 151
real-time data analysis, 20
real-world problem, 5
reconfiguring, 64
rectangular shape, 38
recursion, 146
recursion chain, 146
recursion tree, 146
recursive call, 146
redeployment, 102
redo interaction, 65
redundant element, 57
refactoring tool, 86
regular expression, 130
relation, 42
relational data, 18, 38, 42, 90
relational dataset, 37
relational expression, 113, 133
relational operator, 109
remote data, 90
remote file, 21
rendering, 4
repetitive recursion, 148
repository, 87
research question, 5, 16
response time, 29, 35, 59
result sharing, 14
return statement, 142
river system, 46
root, 18
root node, 18, 45
row, 46

Rubik cube illusion, 34
rule, 14
runtime challenges, 227
runtime complexity, 11, 14, 25, 37
runtime issue, 92
runtime performance, 235

S
sans-serif, 196
scale, 18, 19
scale granularity, 55
scarf plot, 10
scatter plot, 10, 47, 163, 171, 194
scatter plot matrix, 47
scatterplot, 81, 97
scrolling, 66
Seaborn, 80
search task, 7
selecting, 64
selection interaction, 59
self, 158
self-created layout, 9
semantic error, 135
semantic meaning, 19, 49
semantic-finding task, 49
sense, 31
sensor, 23
sensory information, 30
sensory input/output, 66
sequence, 138
sequence rule, 3
sequential behavior, 4
server, 15, 73, 77, 102
set, 120, 122
set of characters, 130
set operation, 122
set theory, 122
shape, 28, 42, 96
Shiny, 15

284 Index

short term memory, 60
short-circuit evaluation, 115
short-term memory, 31
shortcut, 65
shortest path, 37
sibling node, 45
side effect, 139
signage, 73, 101
simple data type, 39, 90
size, 9, 28
size effect, 57
Sketch, 62
sketch, 52, 59, 61
slider, 14, 93, 166, 171
small multiples, 39
small-scale display, 63, 69, 96
smartphone, 63, 96
smooth animation, 72
snapshot, 39
social network, 10, 18, 42
software developer, 61
software development, 86, 87
software metric, 46
software project, 50, 83
software system, 19, 46
sorting, 25
sorting algorithm, 37
source code, 19, 50, 126
spatial data visualization, 9
spatial dimension, 19
spatial point distribution, 195
spatial position, 19
spatiotemporal data, 18, 19, 29
special sequence character, 130
speech, 96
speech recognition system, 66
SPLOM, 47
Spyder, 82, 84, 86, 109
square, 42

standard computer, 68
standard deviation, 53
star plot, 10
static data, 1, 3, 16, 20, 39, 151
static data source, 151
static diagram, 57
static stimulus, 29
statistical evaluation, 4
statistical graphics, 9
statistical output, 3
statistical significance, 105
statistics, 4, 53
stimulus, 29
story telling, 11
storytelling, 53
str, 119
straight line, 38, 42
straight link, 38
stress level, 4
String, 118, 126
String function, 126
String method, 126
string-based data, 152
strong linear behavior, 46
strongly typed language, 118
structured data, 23, 36
structured information, 2, 3
structuring, 91
study design, 36
study experimenter, 105
study participant, 36
study setup, 36
subgroup, 41
Sublime Text, 86
subordination hierarchy, 18, 44
subroutine, 141
subset sum problem, 37
Swing, 8
switch statement, 134

Index 285

symbol, 101
symmetric difference, 122
synergy effect, 28
syntactic sugar, 114
syntax error, 135
syntax highlighting, 86
syntax matching, 86

T
tab, 120, 164, 177
table, 46, 93, 94
Tableau, 14
tabular data, 46, 90, 151
tabular form, 39
tag cloud, 50
tail recursion, 146, 148
talk-aloud, 59
tapered edge, 42
tapered link, 38
task, 35, 51
task at hand, 1, 4, 10, 14, 16, 35, 38
task group, 5, 51
task solution, 6
task-of-interest, 61
tasks at hand, 28
template, 61, 157
temporal behavior, 39
temporal effect, 19
temporal extent, 48
temporal granularity, 19, 51
temporally aggregated data, 37
terminal, 82, 83
termination, 146
termination condition, 137, 139, 146
test expression, 139
testing challenges, 233
text, 49
text analytics, 126
text book, 19

text corpus, 50
text data, 151
text field, 14, 93
text file, 16, 90
text fragment, 49
text input function, 129
textual, 46
textual data, 18, 19, 39, 49, 90, 126
textual information, 19, 93
textual label, 40
textual output, 59
thickness, 28, 42
think-aloud, 59
thinking process, 31
Thonny, 86
three-dimensional, 19
three-dimensional list, 121
time-dependent data, 39
time-dynamic property, 4
time-varying data, 57, 90
tool building, 73
tool state, 65
tool-specific data format, 22
topographic color scale, 64
total computable function, 148
touch, 63
touchscreen, 66
trade-off behavior, 53
traffic data, 19
training, 25
trajectorial data, 18, 19, 90
trajectory, 39, 48
transformation, 4
transformed data, 3
traveling salesman problem, 37
trend, 25, 39
triangle, 42
triangular shape, 38
triple quote, 132

286 Index

trivariate data, 16, 46, 90, 185, 194
True, 113, 118, 120
try block, 136
try-except statement, 136
Tufte principle, 57
tuple, 120, 121
two-dimensional, 19
two-dimensional list, 121
type system, 75

U
UI, 58
UI design, 60
unary operator, 111
uncertainty, 24
uncontrolled study, 105
uncontrolled user study, 14, 104
undirected graph, 18
undo interaction, 60, 65
Unicode, 128
unimodal, 66
union, 122
univariate data, 16, 46, 90, 164, 168,

171
universal usability, 59
unstructured data, 23, 36
update function, 169
update rate, 1
uppercase letter, 125
URL access, 151
usability, 8, 22
usefulness, 59
user, 29, 35
user behavior, 35, 104
user environment, 101
user evaluation, 2, 14, 29, 73, 102,

103, 236
user experience, 2, 101, 103
user experiment, 29

user feedback, 2, 4, 6, 14, 17, 35, 104,
152

user friendliness, 2, 59
user input, 88, 129, 152, 164
user interface, 1, 13, 58, 61, 88, 163
user interface component, 52, 58
user interface design, 59, 73
user interface layout, 173
user performance, 6, 236
user perspective, 103
user study, 4, 35
user task, 5, 13, 17, 27, 36, 51
user tasks, 5
user-friendly, 1
users’ feedback, 5
UTF8, 153
UXPin, 62

V
variable, 18, 46, 118, 124, 157
variable explorer, 86
variable tracker, 86
variance, 53
version control, 86, 87
vertical axis, 47
video, 33
Vim, 86
virtual machine, 15
virtual reality, 63
visual agreement, 61
visual ambiguity, 57
visual analysis, 10
visual analytics, 4, 6, 28, 36
visual analytics system, 4
visual analytics tool, 61
visual attention, 4, 8, 29, 35, 105
visual attention behavior, 4, 8
visual augmentation, 19
visual border, 41

Index 287

visual clutter, 3, 39, 47, 55
visual comparison, 39
visual decoration, 93, 165
visual design, 2, 14, 30, 51, 73, 163,

165
visual design challenge, 216
visual design rule, 51, 53
visual disability, 63
visual distortion, 56
visual encoding, 28, 38, 40, 64
visual experience, 33
visual exploration strategy, 59
visual feature, 7, 59
visual field, 30
visual filter, 7
visual hint, 60
visual information seeking mantra,

57
visual language, 62
visual level, 4
visual memory, 31
visual metaphor, 38, 40
visual output, 3, 10
visual pattern, 27, 37, 55
visual perception, 3
visual perspective, 2, 25
visual pop-out effect, 31
visual scalability, 39, 54, 230
visual scene, 31, 32, 35
visual search, 7
visual stimulus, 19, 29
Visual Studio Code, 86
visual task solution strategy, 4
visual variable, 3, 4, 28, 38–40, 55,

56, 64, 96, 101
visualization, 1, 2, 4, 15, 27, 28
visualization design, 5
visualization framework, 8
visualization library, 8

visualization pipeline, 1, 2, 27
visualization playground, 61
visualization technique, 1, 38, 53
visualization tool, 3, 16, 35, 68, 73,

88
visually disabled user, 36
visually impaired, 60
voice interaction, 62
volume, 28

W
waiting time, 5
wake word, 67
water level, 46
weakly typed language, 118
web app, 15
web application, 76
web browser, 10, 77, 94, 101, 169,

225
web development, 166
web framework, 15
web page, 94, 168
web page reading, 156
web server, 15, 76
web standard, 9
web-based, 9
web-based application, 60
web-based dashboard, 224
web-based eye tracking, 105
web-based solution, 73, 74
web-based tool, 10, 81
web-based visualization, 68
web-based visualization tools, 10
webpage, 76
weight function, 38
weighted relation, 25, 42
while loop, 137, 139
Windows, 82, 223
wireframe, 53, 62

288 Index

word cloud, 50
word frequency, 49
working environment, 82
workspace, 87
wrapper, 78

X
Xara Designer Pro X, 62

Y
young user, 36, 60

Z
zero-based, 121
zoom, 66
zoom and filter, 57

About the Authors

Michael Burch studied computer science and mathematics at the Saarland
University in Saarbrücken, Germany. He received his PhD from the
University of Trier in 2010 in the fields of information visualization and
visual analytics. After 8 years of having been a PostDoc in the Visualization
Research Center (VISUS) in Stuttgart, he moved to the Eindhoven University
of Technology (TU/e) as an assistant professor for visual analytics. From
October 2020 he has been working as a lecturer in visualization at the
University of Applied Sciences in Chur, Switzerland. Michael Burch is on
many international program committees and has published more than 190
conference papers and journal articles in the field of visualization. His main
interests are in information visualization, visual analytics, eye tracking, and
data science.

Marco Schmid studied Natural Resource Science (with specialization in
Renewable Resources and Sustainable Energy) at the School of Life Sciences
and Facility Management (ZHAW) in Zurich, Switzerland. During his study
he worked as a scientific research assistant at the Institute of Applied
Simulation at ZHAW. Then he worked for 3 years in a start-up company
focused on machine learning and predictive models before he moved to the
University of Applied Sciences in Chur, Switzerland in 2019 where he works
as a scientific researcher. His main fields of interest are data science and
software development.

289

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Table of Contents
	Preface
	List of Figures
	List of Tables
	List of Abbreviations/Acronyms
	Chapter 1: Introduction
	1.1: A Visualization Pipeline
	1.2: Human Users and Tasks
	1.3: Programming Directions and Solutions

	Chapter 2: Creating Powerful Dashboards
	2.1: Data Handling
	2.1.1: Datatypes
	2.1.2: Data reading and parsing
	2.1.3: Data storage
	2.1.4: Data preprocessing
	2.1.5: Data transformation

	2.2: Visualization and Visual Analytics
	2.2.1: Visual variables
	2.2.2: Perception and cognition
	2.2.3: The role of the human users
	2.2.4: Algorithmic concepts

	2.3: Examples of Visualization Techniques
	2.3.1: Visualizing simple data types
	2.3.2: Graph/network visualization
	2.3.3: Hierarchy visualization
	2.3.4: Multivariate data visualization
	2.3.5: Trajectory visualization
	2.3.6: Text visualization

	2.4: Design and Prototyping
	2.4.1: Visual design rules
	2.4.2: No-goes and bad smells
	2.4.3: Interface design rules
	2.4.4: Creating a graphical user interface

	2.5: Interaction
	2.5.1: Interaction categories
	2.5.2: Interaction modalities
	2.5.3: Displays
	2.5.4: Multiple coordinated views

	Chapter 3: Python, Dash, Plotly, and More
	3.1: General Background Information
	3.1.1: Python
	3.1.2: Dash
	3.1.3: Plotly and Plotly Express
	3.1.4: Further ingredients and concepts

	3.2: Installations and Options
	3.2.1: Interactive mode
	3.2.2: Jupyter Notebook mode
	3.2.3: Integrated development environment (IDE)
	3.2.4: GitHub

	3.3: Interplay between Dash, Plotly, and Python
	3.3.1: Reading and parsing in a dashboard
	3.3.2: Data transformation in a dashboard
	3.3.3: Dash core components
	3.3.4: Dash HTML components
	3.3.5: Cascading style sheets (CSS)
	3.3.6: Plotly in a dashboard
	3.3.7: Callbacks

	3.4: Deploying
	3.4.1: Heroku
	3.4.2: International users
	3.4.3: Online user evaluation
	3.4.4: Benefits and drawbacks of online dashboards

	Chapter 4: Coding in Python
	4.1: Expressions
	4.1.1: Arithmetic expressions
	4.1.2: Relational expressions
	4.1.3: Boolean or logical expressions
	4.1.4: Bitwise expressions
	4.1.5: Mixed expressions

	4.2: Data Types and Variables
	4.2.1: Basic data types
	4.2.2: Composite data types
	4.2.3: Conversion between data types
	4.2.4: Variables
	4.2.5: Constants

	4.3: Strings and Characters
	4.3.1: String methods
	4.3.2: ASCII code and table
	4.3.3: User input and regular expressions
	4.3.4: Comments

	4.4: Conditionals and Exceptions
	4.4.1: If and else
	4.4.2: Pattern matching
	4.4.3: Exceptions

	4.5: Loops
	4.5.1: Definite iteration
	4.5.2: Indefinite iteration
	4.5.3: Nested loops

	4.6: Functions
	4.6.1: Defining a function
	4.6.2: Calling a function
	4.6.3: Nesting of functions
	4.6.4: Local and global variables

	4.7: More Complex Functions
	4.7.1: Recursion versus tail recursion
	4.7.2: Higher-order functions
	4.7.3: Lambda expressions

	4.8: Reading and Writing Data
	4.8.1: User input
	4.8.2: Reading from a file
	4.8.3: Writing on a file
	4.8.4: Reading web content

	4.9: Object-Oriented Programming
	4.9.1: Classes
	4.9.2: Objects and instances
	4.9.3: Methods
	4.9.4: Inheritance

	Chapter 5: Dashboard Examples
	5.1: Modifying the Color in a Diagram
	5.1.1: A simple dashboard with a histogram
	5.1.2: Coding details
	5.1.3: Dashboard in action

	5.2: Two Diagrams, Bootstrap, and Value Filter
	5.2.1: Extension with a scatter plot and slider
	5.2.2: Coding details
	5.2.3: Dashboard in action

	5.3: Dashboard with Tabs, CSS, and Plotly Template
	5.3.1: Histogram and scatter plot separately
	5.3.2: Coding details
	5.3.3: Dashboard in action

	5.4: Inputs from a Plot and Plotly Go
	5.4.1: Selecting point clouds for an overview
	5.4.2: Coding details
	5.4.3: Dashboard in action

	5.5: Two Tabs, Three Plots in One Tab, and Several Inputs
	5.5.1: Scatter plot as a density heatmap
	5.5.2: Coding details
	5.5.3: Dashboard in action

	Chapter 6: Challenges and Limitations
	6.1: Design Issues
	6.1.1: Interface design challenges
	6.1.2: Visual design challenges
	6.1.3: Aesthetics criteria

	6.2: Implementation Challenges
	6.2.1: Software and libraries
	6.2.2: Integrated development environments (IDEs)
	6.2.3: Developers and experience levels
	6.2.4: Operating systems
	6.2.5: Internet connection and servers
	6.2.6: Web browsers

	6.3: Challenges during runtime
	6.3.1: Data scalability
	6.3.2: Algorithmic scalability
	6.3.3: Visual scalability
	6.3.4: Perceptual scalability

	6.4: Testing Challenges
	6.4.1: Online accessibility
	6.4.2: Runtime performance
	6.4.3: User performance and evaluation

	Chapter 7: Conclusion
	References
	Index
	About the Authors

